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➢ Overall Architecture 

➢ How to reconstruct spectral information?

➢ How to incorporate degradation information?

The key part is indicated by *

PGSSTB Prompt-Guided Spatial-Spectral Transformer Block

TVSP * Text-Visual Synergistic Prompt Module

SSA Spatial Self-Attention

PGSSA * Prompt-Guided Spectral Self-Attention

GMLP Gated Multi-Layer Perceptron
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➢ How to incorporate degradation information?
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➢ Overall Architecture 

➢ How to reconstruct spectral information?
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➢ How to reconstruct spectral information?
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➢ How to reconstruct spectral information?
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➢ How to reconstruct spectral information?
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➢ Overall Architecture 
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Dataset Sensor Wavelength (nm) Channels Size Amount GSD (m)

Natural 

Scene

ARAD_1K Specim IQ 400–700 31 482×512 1000 /

ICVL Specim PS Kappa DX4 400–700 31 1392×1300 201 /

Remote

Sensing

Xiong’an Unknown 400–1000 256 3750×1580 1 0.5

WDC Hydice 400–2400 191 1208×307 1 5

PaviaC ROSIS 430–860 102 1096×715 1 1.3

PaviaU ROSIS 430–860 103 610×340 1 1.3

Houston ITRES CASI-1500 364–1046 144 349×1905 1 2.5

Chikusei HH-VNIR-C 343–1018 128 2517×2335 1 2.5

Eagle AsiaEAGLE II 401–999 128 2082×1606 1 1

Berlin Unknown 455–2447 111 6805×1830 1 3.6

Urban Hydice 400-2500 210 307×307 1 2

APEX Unknown 350-2500 285 1000×1500 1 2

EO-1 Hyperion 357-2567 242 3471×991 1 30

Table 1. Properties of 13 Natural Scene and Remote Sensing Hyperspectral Datasets.
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Loss：L1

optimizer：AdamW (β1 = 0.9, β2 = 0.999)

Batch_size：32

Learning rate：2×10-4 / 1×10-4
→ 1×10-6

Epochs：100 / 300

Patch_size：64×64
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All-in-One Results
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LDERT / 30.74Input / 14.07 SST / 30.53 PromptIR / 26.38 InstructIR / 24.63 PromptHSI / 30.78 Ours / 31.36 GT / PSNR (dB)

Table 2. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific 

methods on 7 HSI restoration tasks.  Gaussian Denoising & Complex Denoising

Figure 2. [All-in-one] Visual comparison results on Complex Denoising. 



All-in-One Results

19



All-in-One Results

20

Figure 3. [All-in-one] Visual comparison results on Inpainting. 

Figure 4. [All-in-one] Visual comparison results on Dehazing. 

Restormer / 42.16Input / 14.20 NAFNet / 40.82 PromptIR / 42.65 InstructIR / 41.43 PromptHSI / 38.52 Ours / 47.67 GT / PSNR (dB)

DCMPNet / 37.68Input / 18.24 MB-Taylor / 38.34 PromptIR / 37.35 InstructIR / 33.76 PromptHSI / 37.82 Ours / 39.49 GT / PSNR (dB)
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Generalization Results
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Table 3. [Generalization] The results of Motion 

Deblurring on the ICVL dataset and Poisson 

Denoising on the Houston dataset. Task-specific 

methods are trained on the entire dataset, while all-in-

one methods are fine-tuned using only 5% of the data.

Motion Deblurring

Poisson Denoising

Few-shot (5%)

Zero-shot

Input Task-Specific PromptIR GTInstructIR PromptHSI Ours

Poisson 

Denoising



Real-World Results
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Input SST LDERT AirNet PromptIR InstructIR PromptHSI Ours

Figure 5. [Real-world] Visual comparison results on Real Denoising. 

Figure 6. [Real-world] Visual comparison results on Real Dehazing. 

Input MB-Taylor DCMPNet AirNet PromptIR InstructIR PromptHSI Ours

Table 4. No-reference assessment (QSFL) on real datasets. Table 5. Application evaluation: Urban dataset classification.
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Table 6. PSNR of composite degradations (before / after 

fine-tunig). Combinations of noise(N), blur(B), and haze(H).
Figure 7. Illustration of the composite degradation synthesis pipeline.
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Controllable Results
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Degraded GTDenoised

Figure 8. [Controllable Reconstruction] Removing Complex

Noise from Complex Noise + Gaussian Blur Degradation.

Degraded GTDenoised

Figure 9. [Controllable Reconstruction] Removing Gaussian 

Noise from Gaussian Noise + Gaussian Blur Degradation.



Composite Degradations
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PromptHSIInstructIRHAIRPromptIRAirNet 26.4620.3824.7725.6221.64

2.Deblur GT3.Dehaze 1.DenoiseDegraded PSNR30.1219.1618.0114.79
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Ablation Study & Complexity Analysis
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Table 10. Model complexity comparisons

Table 7. Ablation study to verify the effectiveness of modules on 

Xiong’an dataset in Gaussian denoising task with sigma = 70.

Table 8. Ablation study to verify the effectiveness of modules on 

Chikusei dataset in Inpainting task with mask ratio = 0.9.

Table 9. Ablation study to verify the effectiveness of modules on 

PaviaU dataset in Dehazing task with Omega = 1.0.
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Conclusion
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➢ We propose a novel multi-prompt framework for 

all-in-one HSI restoration, integrating spectral,

textual, and visual prompts. The spectral prompt 

provides universal low-rank spectral patterns to 

enhance spectral reconstruction.

➢ We introduce a text-visual synergistic prompt 

that combines semantic representations from 

textual prompts with fine-grained features from 

visual prompts, enhancing the controllability, 

interpretability, and degradation adaptability of 

the HSI restoration process.

➢ Extensive experiments on 9 HSI restoration 

tasks and real-world scenarios demonstrate that 

MP-HSIR significantly outperforms compared 

all-in-one methods and surpasses state-of-the-

art task-specific approaches in multiple tasks.
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High-resolution information intelligent Processing and

Application Group (HiPAG)

EarthVision and Application (EVA)
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