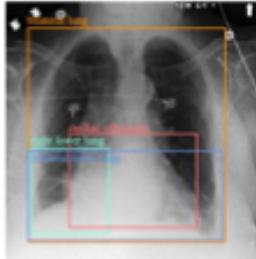


GEMeX: A Large-Scale, Groundable, and Explainable Medical VQA Benchmark for Chest X-ray Diagnosis

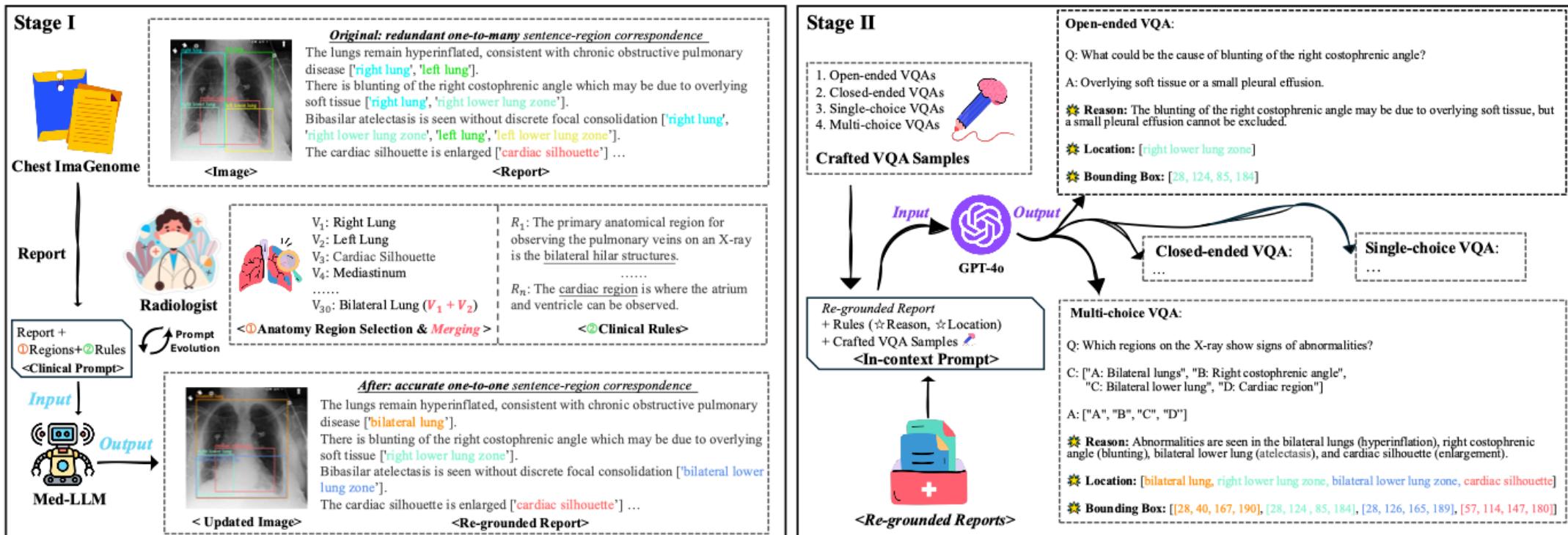
*Bo Liu¹, Ke Zou², Li-Ming Zhan¹, Zexin Lu¹, Xiaoyu Dong¹, Yidi Chen³, Chengqiang Xie¹,
Jiannong Cao¹, Xiao-Ming Wu¹*, Huazhu Fu⁴**

¹The Hong Kong Polytechnic University, Hong Kong S.A.R., China

² National University of Singapore, Singapore


³ West China Hospital of Sichuan University, China

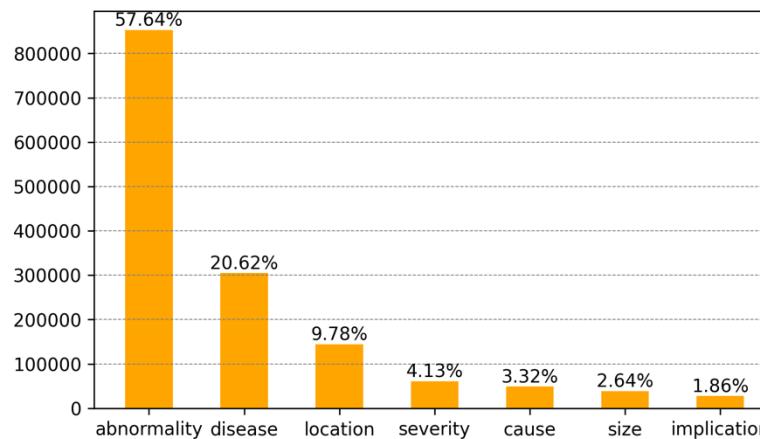
⁴ IHPC, Agency for Science, Technology and Research, Singapore

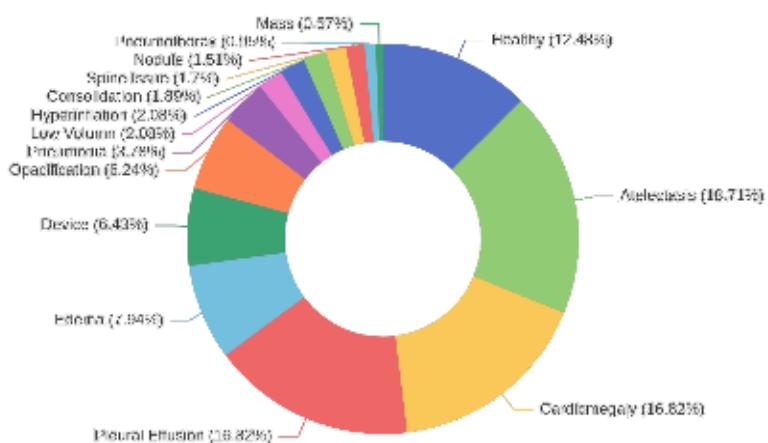

□ Motivation

Dataset	VQA Type	Example
 MIMIC-CXR-VQA	Closed-ended Open-ended	<p>Closed-ended VQA: Q: Is any devices present within the right atrium? A: No.</p> <p>Open-ended VQA: Q: What are all the diseases identifiable within the right hilar structures? A: A small right pleural effusion.</p>
 Ours	Closed-ended Open-ended Single-choice Multi-choice	<p>Multi-choice VQA: Q: Which regions on the X-ray show signs of abnormalities? C: ["A: Bilateral lungs", "B: Right costophrenic angle", "C: Bilateral lower lung", "D: Cardiac region"] A: ["A", "B", "C", "D"]</p> <p>Reason: Abnormalities are seen in the bilateral lungs (hyperinflation), right costophrenic angle (blunting), bilateral lower lung (atelectasis), and cardiac silhouette (enlargement).</p> <p>Bounding Box: [[28, 40, 167, 190], [28, 124, 85, 184], [28, 126, 165, 189], [57, 114, 147, 180]]</p>

- a) Popular datasets often lack visual and textual explanations for answers, hindering comprehension for patients and junior doctors
- b) They typically offer a narrow range of question formats, like open-ended and closed-ended ones, inadequately reflecting the diverse requirements in practical scenarios

□ Dataset Construction


- I. In Stage I (left), medical LLM performs re-grounding on the original reports based on the pathological regions and clinical guidance specified by the radiologists, generating more precise sentence-region correspondence.
- II. In Stage II (right), the well-crafted prompt enables GPT-4o to generate a high-quality, large-scale Med-VQA dataset with both textual and visual explanations, leveraging the re-grounded reports from Stage I.


□ Dataset Statistics

Dataset	# Images	# QA Pairs	# Modalities	# Question Types‡	# Groundable	# Explainable
VQA-RAD [24]	0.315K	3.5K	Diverse†	O. & C.	✗	✗
SLAKE [30]	0.642K	14K	Diverse†	O. & C.	✗	✗
OmniMedVQA [18]	118.010K	128K	Diverse†	O. & C. & S.	✗	✗
PMC-VQA [51]	149.075K	227K	Diverse†	O. & C. & S.	✗	✗
VQA-Med [7]	4.5K	4.5K	Diverse†	O. & C.	✗	✗
PathVQA [16]	149K	33K	Pathology	O. & C.	✗	✗
RadGenome-Chest CT [52]	50.188K	1.3M	Chest CT	O. & C.	✓	✗
MIMIC-Diff-VQA [17]	164.324K	700K	Chest X-ray	O. & C.	✗	✗
MIMIC-CXR-VQA [4]	142.797K	377K	Chest X-ray	O. & C.	✗	✗
GEMeX (Ours)	151.025K	1.6M	Chest X-ray	O. & C. & S. & M.	✓	✓ (Vision & Language)

Comparison of medical VQA datasets

Distribution of question content

Distribution of normality and common abnormality

□ Evaluation

Models	Open-ended		Closed-ended			Single-choice			Multi-choice			Avg.†
	AR-score†	V-score	A-score	AR-score†	V-score	A-score	AR-score†	V-score	A-score	AR-score†	V-score	
Random	-	-	48.80	-	-	25.85	-	-	7.50	-	-	-
GPT-4o-mini [1]	97.68	<u>18.05</u>	59.30	71.14	<u>28.64</u>	<u>59.00</u>	<u>77.47</u>	<u>23.62</u>	<u>49.13</u>	<u>82.91</u>	<u>19.19</u>	<u>82.30</u>
LLaVA-v1 [34]	76.14	-	30.76	38.02	-	-	50.47	-	-	66.52	-	57.79
LLaVA-v1.5 [33]	77.62	-	58.93	57.00	-	47.00	57.05	-	-	65.17	-	64.21
Mini-GPT4-v1 [56]	55.32	-	26.33	31.09	-	-	37.63	-	-	46.65	-	42.67
mPLUG-Owl [48]	76.73	-	27.26	36.70	-	32.00	46.89	-	-	67.92	-	57.06
DeepSeek-VL [35]	79.30	11.00	57.10	59.86	8.28	51.69	62.03	8.57	17.99	70.35	12.98	67.89
Qwen-VL-Chat [6]	78.36	3.17	23.02	45.79	12.25	44.69	59.15	16.69	7.30	67.21	2.26	62.63
LLaVA-Med-v1 [26]	90.34	-	62.62	69.91	-	-	61.74	-	-	68.14	-	72.53
LLaVA-Med-v1.5 [26]	94.43	-	<u>71.82</u>	<u>76.54</u>	-	-	66.04	-	-	67.28	-	76.07
MiniGPT-Med [3]	86.12	-	55.24	65.25	-	-	55.61	-	-	64.33	-	67.83
XrayGPT [40]	81.17	-	-	68.17	-	-	48.33	-	-	55.10	-	63.19
RadFM [43]	88.57	-	58.01	67.91	-	-	57.82	-	-	62.41	-	69.18
LLaVA-Med-GEMeX	<u>97.05</u>	51.47	77.35	80.72	53.20	73.08	81.42	54.57	67.42	84.98	47.99	86.04

- We evaluate 12 representative large vision language models (LVLMs) on this dataset. The results show suboptimal performance, underscoring the dataset's complexity.
- Most existing LVLMs exhibit weak performance in providing answer explainability, particularly for the visual component. Moreover, when faced with choice-based questions, many models — especially in the medical domain — struggle to deliver definitive answers.
- We propose a strong model by fine-tuning LLaVA-Med-7B on the training set. The substantial performance improvement showcases the dataset's effectiveness.

Thank you!