

Bi-Level Optimization for Self-Supervised AI-Generated Face Detection

Mian Zou^{1,2}, Nan Zhong², Baosheng Yu³, Yibing Zhan⁴, Kede Ma²

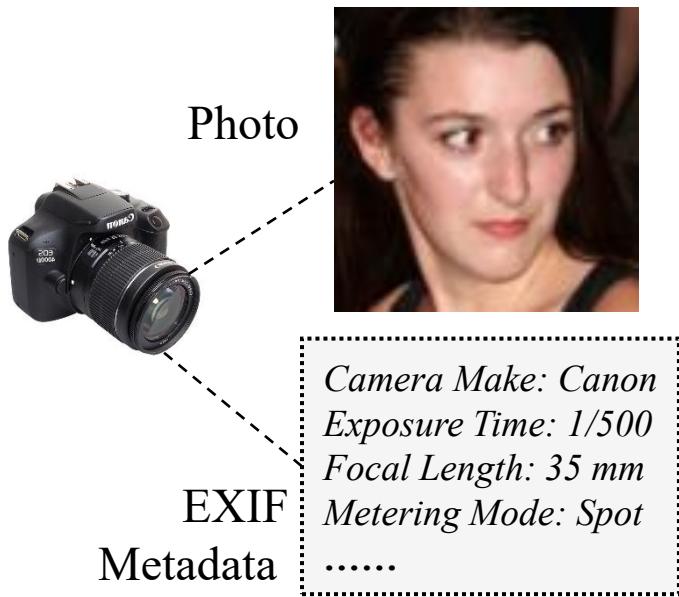
¹Jiangxi University of Finance and Economics ²City University of Hong Kong
³Nanyang Technological University ⁴Yunnan United Vision Technology

NANYANG
TECHNOLOGICAL
UNIVERSITY
SINGAPORE

ICCV
OCT 19-23, 2025
HONOLULU
HAWAII

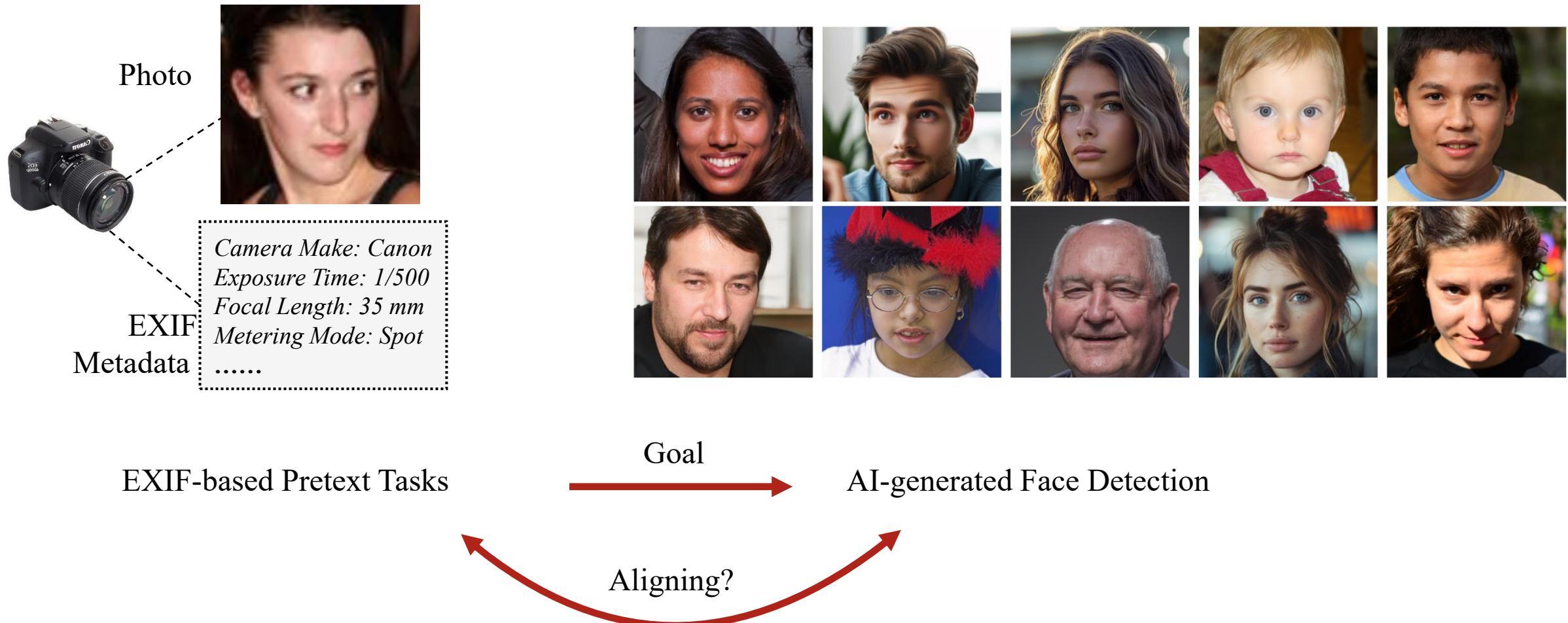
Background

- AI-Generated Faces
 - These faces closely resemble photographic ones
 - Their misuse poses risks, such as spreading misinformation and tampering with media integrity


Red: Photographic face images

Motivation

- Drawbacks of Current Works
 - Supervised detectors often overfit to specific generators
 - visual artifacts
 - architectural principles
 - generation process
 - model-dependent: limited generalization to unseen or emerging generative techniques
 - Self-supervised detectors use pretext tasks
 - not aligned with the goal of AI-generated face detection
 - suboptimal performance


Motivation

Tag	Type	Example Value
Flash	Categorical	Flashoff, Flashauto
Make	Categorical	Canon, FUJIFILM
Metering Mode	Categorical	Multi-segment, Spot
Model	Categorical	EOS5D MarkII, EOS7D
Scene Capture Type	Categorical	Standard, Landscape
Exposure Mode	Categorical	Auto, Manual
White Balance Mode	Categorical	Auto, Manual
Aperture	Ordinal	F2.8, F4
Exposure Bias	Ordinal	0 EV, -1 EV
Exposure Time	Ordinal	1/60 sec, 1/200 sec
F-Number	Ordinal	F2.0, F3.2
Focal Length	Ordinal	5.8 mm, 35 mm
ISO Speed	Ordinal	400, 100
Shutter Speed	Ordinal	1/63 sec, 1/79 sec

The Camera Metadata Perspective!

Aligning Pre-training Pretext Tasks with Downstream Main Task

Bi-Level Optimization for AI-Generated Face Detection

$$\min_{\boldsymbol{\lambda}} \sum_{\mathbf{x} \in \mathcal{B}_{\text{val}}} \ell_1(\mathbf{x}; \boldsymbol{\theta}^*)$$

$$\text{s.t. } \boldsymbol{\theta}^* = \arg \min_{\boldsymbol{\theta}} \sum_{\mathbf{x} \in \mathcal{B}_{\text{tr}}} \sum_{i=1}^K \lambda_i \ell_i(\mathbf{x}; \boldsymbol{\theta})$$

- Inner-Loop Optimization $\boldsymbol{\theta}^* = \arg \min_{\boldsymbol{\theta}} \sum_{\mathbf{x} \in \mathcal{B}_{\text{tr}}} \sum_{i=1}^K \lambda_i \ell_i(\mathbf{x}; \boldsymbol{\theta})$
 - Feature extractor training via linear weighted pretext tasks
- Outer-Loop Optimization $\min_{\boldsymbol{\lambda}} \sum_{\mathbf{x} \in \mathcal{B}_{\text{val}}} \ell_1(\mathbf{x}; \boldsymbol{\theta}^*)$
 - Task weighting tuning guided by the **downstream objective**

Photographic Faces
vs.
AI-Generated Faces

Inferior Results!

Surrogate Task for AI-Generated Face Detection

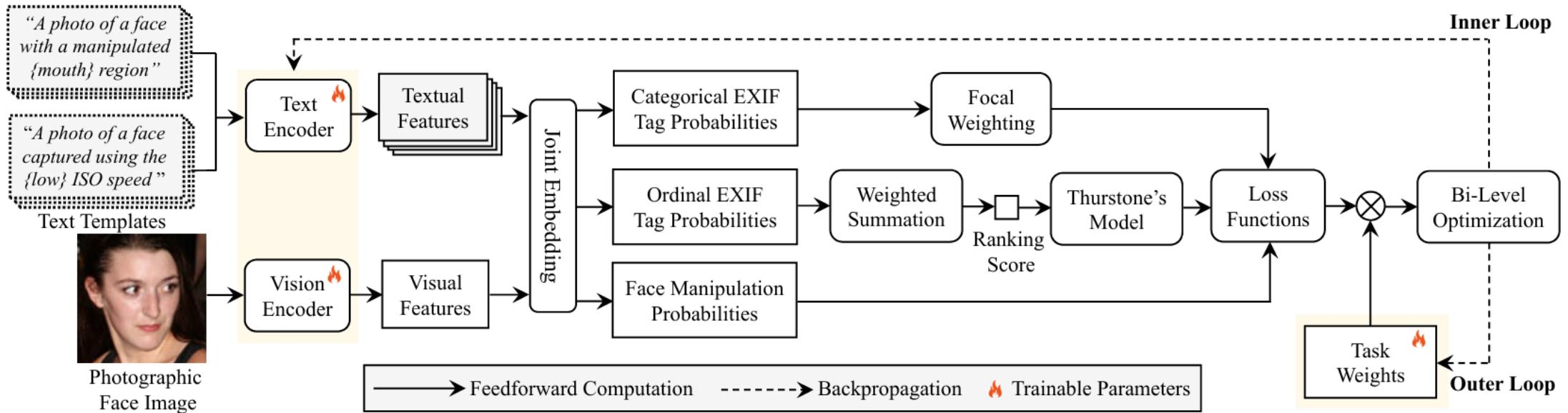
- Face Manipulation Detection as the Surrogate Task
 - Artificial Face Manipulations
 - Blind to AI-Generated Faces
 - Good Performance

Horizontal
Eye Flipping

Horizontal
Mouth Flipping

Vertical
Mouth Flipping

Global Affine
Transformation



Original
Face Image

Surrogate Task for AI-Generated Face Detection

- Two Advantages
 - Avoiding Reliance on Generative Models
 - Aligning Conceptually with the Task of AI-Generated Face Detection
 - Distinguishing between photographic faces and non-photographic ones, manipulated or generated
 - Joint embedding space for providing an explicit binary distinction: “*A photo of a {photographic, manipulated} face*”

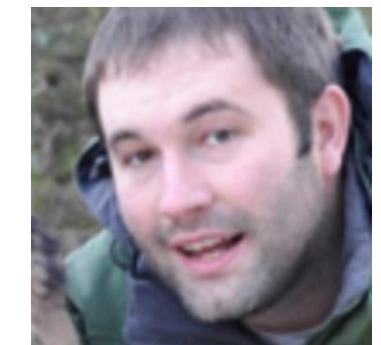
BLADES: Bi-Level AI-Generated Face DEtector with Self-Supervision



BLADES

- Coarse-grained Face Manipulation Detection
 - Binary classification on original photographic faces and manipulated ones

Horizontal
Eye Flipping


Horizontal
Mouth Flipping

Vertical
Mouth Flipping

Global Affine
Transformation

Original
Face Image

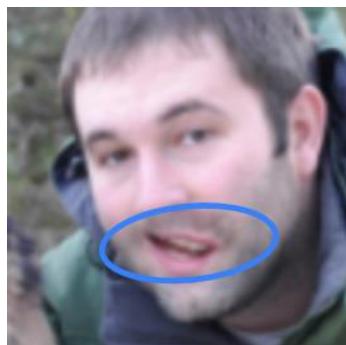
BLADES

- Categorical EXIF classification
 - E.g., given the tag of make
 - The photo was taken with a Canon camera or a Fujifilm camera ?
 - Long-tailed distribution (e.g., Canon images may outnumber Apple by $10\times$)
 - Focal version ([Lin et al., 2017](#)) of the multi-class classification loss that down-weights well-classified samples

Tag	Type	Example Value
Flash	Categorical	Flashfired, Flashauto
Make	Categorical	Canon, FUJIFILM
Metering Mode	Categorical	Multi-segment, Spot
Model	Categorical	EOS5DMarkII, EOS7D
Scene Capture Type	Categorical	Standard, Landscape
Exposure Mode	Categorical	Auto, Manual
White Balance Mode	Categorical	Auto, Manual
Aperture	Ordinal	F2.8, F4
Exposure Bias	Ordinal	0 EV, -1 EV
Exposure Time	Ordinal	1/60 sec, 1/200 sec
F-Number	Ordinal	F2.0, F3.2
Focal Length	Ordinal	5.8 mm, 35 mm
ISO Speed	Ordinal	400, 100
Shutter Speed	Ordinal	1/63 sec, 1/79 sec

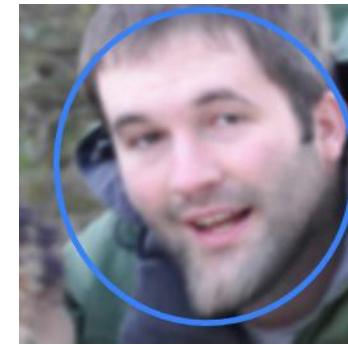
BLADES

- Ordinal EXIF ranking
 - Numerical relationships are important
 - Given two images (x, x') , $\widehat{\text{tag}}_i(x) \geq \widehat{\text{tag}}_i(x')$?
 - Pairwise ranking effectively captures the latent ordinal structure in EXIF-based features, improving the model's sensitivity to subtle visual differences
 - To address tokenizers fragmenting numeric relationships, raw EXIF values are discretized into low/medium/high, with continuous estimates recovered via weighted averaging


Tag	Type	Example Value
Flash	Categorical	Flashfired, Flashauto
Make	Categorical	Canon, FUJIFILM
Metering Mode	Categorical	Multi-segment, Spot
Model	Categorical	EOS5DMarkII, EOS7D
Scene Capture Type	Categorical	Standard, Landscape
Exposure Mode	Categorical	Auto, Manual
White Balance Mode	Categorical	Auto, Manual
Aperture	Ordinal	F2.8, F4
Exposure Bias	Ordinal	0 EV, -1 EV
Exposure Time	Ordinal	1/60 sec, 1/200 sec
F-Number	Ordinal	F2.0, F3.2
Focal Length	Ordinal	5.8 mm, 35 mm
ISO Speed	Ordinal	400, 100
Shutter Speed	Ordinal	1/63 sec, 1/79 sec

BLADES

- Fine-grained Face Manipulation Detection
 - Identifying which face regions have been manipulated


Horizontal
Eye Flipping

Horizontal
Mouth Flipping

Vertical
Mouth Flipping

Global Affine
Transformation

Original
Face Image

Experiments & Results

- Cross-Generator Detection

Method	StyleGAN2	VQGAN	LDM	DDIM	SDv2.1	FreeDoM	HPS	Midjourney	SDXL	Average
CNND [52]	50.61	99.89	53.07	56.55	50.51	58.62	50.31	51.66	54.49	58.41
GramNet [34]	51.16	99.92	53.25	50.09	50.23	51.59	50.26	52.91	53.63	57.00
RECCE [3]	66.64	100.0	70.91	73.10	71.62	77.52	64.14	62.19	65.29	72.38
LNP [31]	80.06	99.43	67.35	50.10	54.13	50.06	50.55	50.40	50.59	61.41
LGrad [47]	52.94	<u>99.99</u>	99.80	64.91	57.59	66.58	60.14	76.59	74.03	72.43
DIRE [53]	72.48	69.81	<u>98.92</u>	77.80	58.84	89.05	62.50	90.75	87.79	78.66
Ojha23 [38]	65.45	83.40	70.06	72.25	72.76	78.55	56.21	54.96	58.01	67.96
AEROBLADE [43]	48.69	51.99	69.50	42.53	46.19	90.05	77.40	82.16	81.95	65.61
FatFormer [32]	98.91	98.30	97.82	<u>95.63</u>	68.88	81.04	90.28	88.20	88.08	<u>89.68</u>
Zou25 [66]	76.88	74.59	93.83	93.63	<u>78.62</u>	95.31	83.79	91.29	91.71	86.63
BLADES-OC (Ours)	76.75	76.78	93.63	96.05	80.70	96.09	<u>84.82</u>	<u>92.79</u>	94.48	88.01
BLADES-BC (Ours)	<u>94.22</u>	97.24	96.95	94.33	74.83	<u>95.73</u>	84.40	95.19	<u>93.84</u>	91.86

- OC: One-class anomaly detection via a Gaussian mixture model fitted to photographic face embeddings, where samples below a likelihood threshold are flagged as AI-generated
- BC: Binary classification using a lightweight MLP trained on learned photographic and AI-generated embeddings

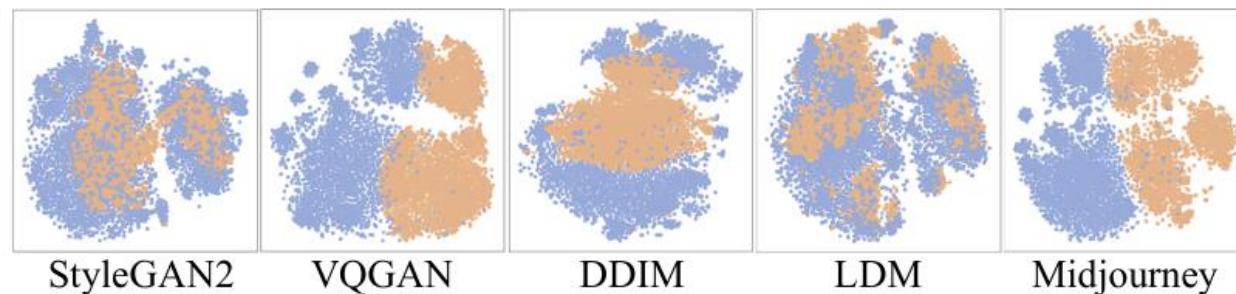
Experiments & Results

- Sensitivity and Specificity Analysis

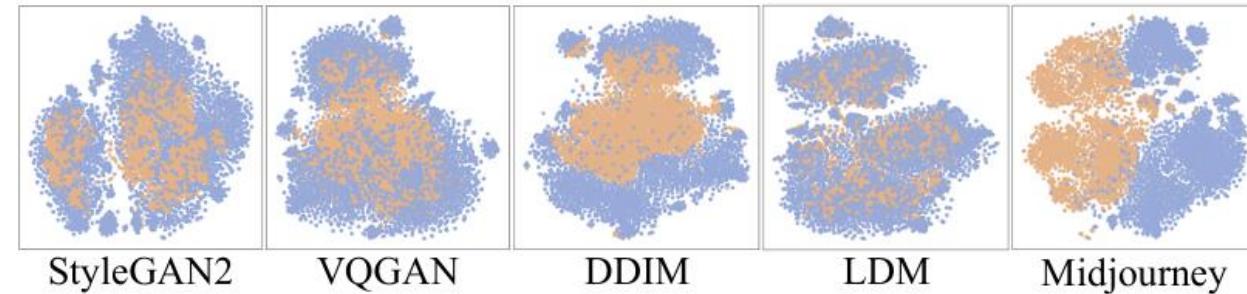
Method	Photographic (%)		AI-generated (%)		F-score↑
	TNR↑	FPR↓	TPR↑	FNR↓	
LGrad [47]	99.98	0.02	44.97	55.03	0.60
DIRE [53]	99.96	0.04	54.37	45.63	0.65
Ojha23 [38]	75.49	24.51	60.39	39.61	0.64
FatFormer [32]	97.61	2.38	81.74	18.26	0.87
BLADES-BC	94.64	5.36	88.97	11.03	0.91

- For photographic faces, we report true negative rate(TNR) and false positive rate (FPR)
- For AI-generated faces, true positive rate (TPR) and false negative rate (FNR)
- The F-score summarizes over all detection performance

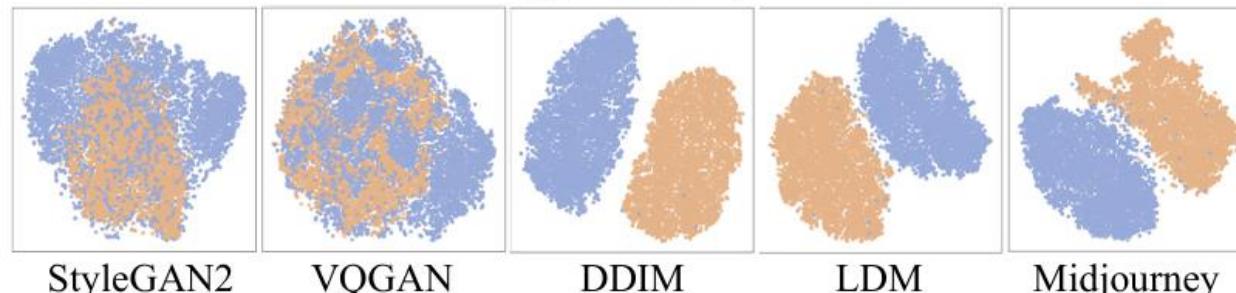
Experiments & Results

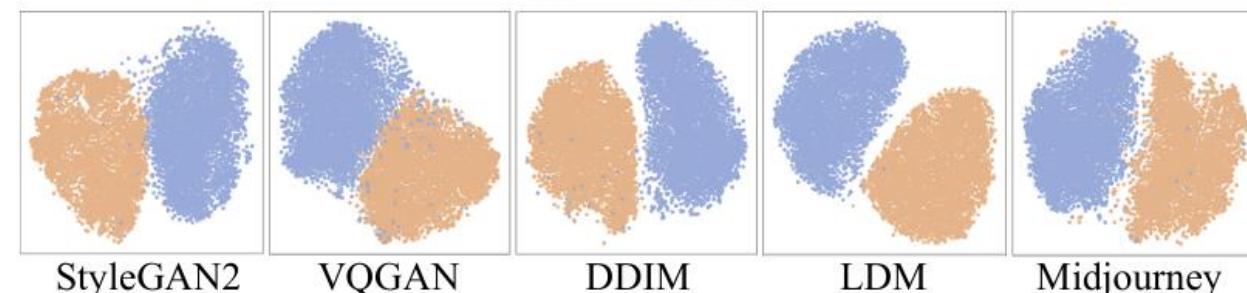

- Feature Separability Comparison

Method	StyleGAN2	VQGAN	LDM	DDIM	SDv2.1	FreeDoM	HPS	Midjourney	SDXL	Average
CLIP [41]	33.99	60.20	55.49	82.85	90.15	85.39	91.22	92.21	93.66	76.13
FaRL [62]	34.35	55.91	47.26	85.10	95.24	79.91	93.97	89.72	94.61	75.12
EAL [61]	69.71	72.41	85.81	84.98	74.21	97.92	87.33	91.65	93.04	84.12
Hu21 [22]	50.00	49.99	49.99	49.99	49.99	49.99	49.99	50.00	49.99	49.99
LNP [31]	37.55	63.28	71.12	69.54	65.64	66.40	66.64	66.70	67.25	63.79
Zou25 [66]	85.69	84.31	98.66	97.96	88.29	99.79	91.92	97.07	97.23	93.43
BLADES-OC	87.89	88.31	98.24	99.32	91.72	99.92	93.93	97.80	98.36	95.05


- One-class classification (AUC (%))

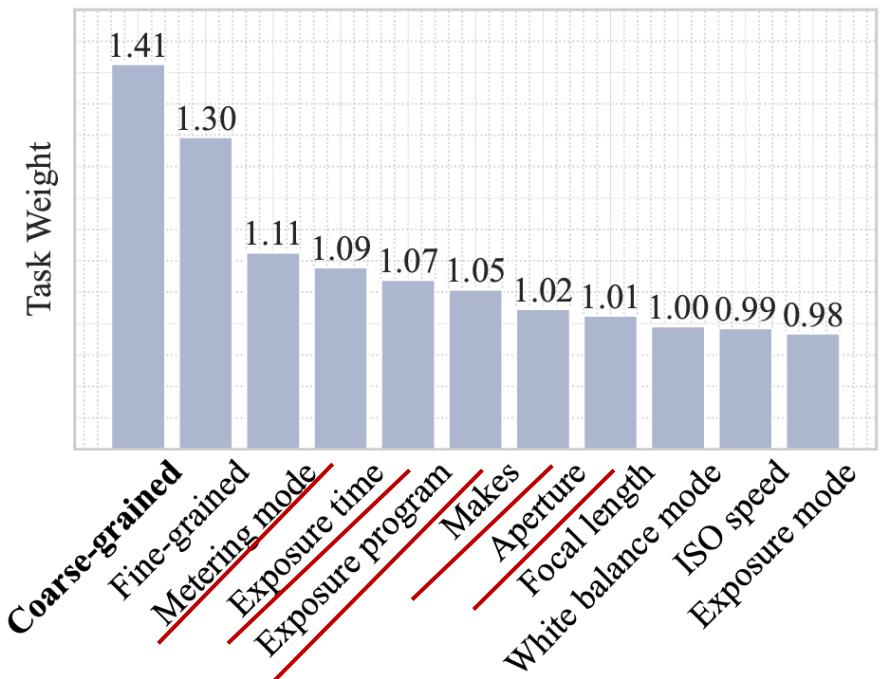
Experiments & Results


- Feature Separability Comparison
 - t-SNE visualizations


(a) CLIP [41]

(b) FaRL [62]

(c) EAL [61]



(d) BLADES-OC

➤ photographic (yellow) and AI-generated (blue)

Experiments & Results

- Learned Task Weights

- Face-specific Tasks are Prioritized
- Exposure-related EXIF Tags are More Informative

Summary

- We present BLADES, a bi-level optimization scheme that explicitly steers self-supervised pretraining toward AI-generated face detection
- We implement BLADES using joint embedding that incorporates EXIF-based and manipulation-based pretext/surrogate tasks to detect AI-generated faces
- We demonstrate state-of-the-art performance in both one-class and binary classification evaluations, with strong cross-generator generalization

Thanks