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Background

• AI-Generated Faces

• These faces closely resemble photographic ones

• Their misuse poses risks, such as spreading misinformation and tampering with 
media integrity

Red: Photographic face images



Motivation

• Drawbacks of Current Works

• Supervised detectors often overfit to specific generators 

• visual artifacts

• architectural principles

• generation process

• model-dependent: limited generalization to unseen or emerging generative techniques

• Self-supervised detectors use pretext tasks

• not aligned with the goal of AI-generated face detection

• suboptimal performance



Motivation
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The Camera Metadata Perspective!



Aligning Pre-training Pretext Tasks with 
Downstream Main Task

Camera Make: Canon

Exposure Time: 1/500

Focal Length: 35 mm

Metering Mode: Spot
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EXIF-based Pretext Tasks AI-generated Face Detection
Goal

Aligning?



Bi-Level Optimization for AI-Generated Face 
Detection

• Inner-Loop Optimization

• Feature extractor training via linear weighted pretext tasks

• Outer-Loop Optimization

• Task weighting tuning guided by the downstream objective Inferior Results!

Photographic Faces

vs.

AI-Generated Faces



Surrogate Task for AI-Generated Face 
Detection

• Face Manipulation Detection as the Surrogate Task

• Artificial Face Manipulations

• Blind to AI-Generated Faces

• Good Performance

Original
Face Image

Horizontal 
Eye Flipping

Horizontal 
Mouth Flipping

Vertical 
Mouth Flipping

Global Affine 
Transformation



Surrogate Task for AI-Generated Face 
Detection

• Two Advantages

• Avoiding Reliance on Generative Models

• Aligning Conceptually with the Task of AI-Generated Face Detection

- Distinguishing between photographic faces and non-photographic ones, manipulated or 

generated

- Joint embedding space for providing an explicit binary distinction:  “A photo of a 

{photographic, manipulated} face”



BLADES: Bi-Level AI-Generated Face 
DEtector with Self-Supervision 



BLADES

• Coarse-grained Face Manipulation Detection

• Binary classification on original photographic faces and manipulated ones
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BLADES

• Categorical EXIF classification

• E.g., given the tag of make

• The photo was taken with a Canon
camera or a Fujifilm camera ?

• Long-tailed distribution (e.g., Canon
images may outnumber Apple by

10×)

₋ Focal version (Lin et al., 2017) of the
multi-class classification loss that down-
weights well-classified samples

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Doll´ar. Focal loss for dense object detection. In ICCV, pages 2980–2988, 2017.



BLADES

• Ordinal EXIF ranking

• Numerical relationships are important

• Given two images 𝒙, 𝒙′ , ෞtag𝑖 𝒙 ≥
ෞtag𝑖 𝒙′ ?

• Pairwise ranking effectively captures the
latent ordinal structure in EXIF-based
features, improving the model’s
sensitivity to subtle visual differences

• To address tokenizers fragmenting
numeric relationships, raw EXIF values
are discretized into low/medium/high,
with continuous estimates recovered via
weighted averaging



BLADES

• Fine-grained Face Manipulation Detection

• Identifying which face regions have been manipulated
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Experiments & Results

➢ OC: One-class anomaly detection via a Gaussian mixture model fitted to photographic face embeddings, where 

samples below a likelihood threshold are flagged as AI-generated

➢ BC: Binary classification using a  lightweight MLP trained on learned photographic and AI-generated embeddings

• Cross-Generator Detection



Experiments & Results

• Sensitivity and Specificity Analysis

➢ For photographic faces, we report true negative rate(TNR) and false positive rate (FPR) 

➢ For AI-generated faces, true positive rate (TPR) and false negative rate (FNR)

➢ The F-score summarizes over all detection performance



Experiments & Results

• Feature Separability Comparison 

➢ One-class classification (AUC (%))



Experiments & Results

• Feature Separability Comparison 

• t-SNE visualizations

➢ photographic (yellow) and AI-generated (blue)



Experiments & Results

• Learned Task Weights

• Face-specific Tasks are Prioritized

• Exposure-related EXIF Tags are More 

Informative



Summary

• We present BLADES, a bi-level optimization scheme that explicitly steers 
self-supervised pretraining toward AI-generated face detection

• We implement BLADES using joint embedding that incorporates EXIF-
based and manipulation-based pretext/surrogate tasks to detect AI-
generated faces

• We demonstrate state-of-the-art performance in both one-class and binary 
classification evaluations, with strong cross-generator generalization
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