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Overview

« What is 3D Lookup Table (3D LUT)?

- A3DLUT(T3? = {tﬁgb|c ef{r,g, b}}) comprises sparsely sampled input values and corresponding

output values on a 3D lattice.

- The 3D LUT transform can save computational costs and inference time by interpolating pre-calculated values.
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Overview

 Image-adaptive 3D LUT image enhancement methods

- The image-adaptive 3D LUT methods achieved better performance than the fixed one
by generating 3D LUTs for each image.
- Benefit
= Low computational costs
= Short inference time
- Problem
= Lack of spatial information ,’Tmage-adaptive 3D LUTs
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Overview
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« Spatial aware image-adaptive 3D LUT image enhancement methods ..,| S o spaataware w1
- Some spatial aware image-adaptive 3D LUT methods overcome
the limitation with spatial feature fusion
- However, additional modules introduce a substantial number of
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parameters and long inference time.
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Overview

« Key idea

- The 3D LUTs generated for each image can often be redundant through the analysis
- We propose the decomposition techniques by low dimensional LUTs and
singular value decomposition(SVD).

- The previous spatial-aware methods are not cache-efficient when incorporating spatial information.
- We propose cache-efficient spatial fusion structure to deliver quick inference.



Method

Overall architecture
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Method

« Spatial feature fusion using bilateral grids

- The bilateral grid is a data structure capable of effectively providing spatial features.!!!

- We adopt the bilateral grid to incorporate spatial features, owing to its structural similarity to 3D LUTSs,
which enables the application of LUT decomposition techniques.
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[1] Kim et al. "Image-adaptive 3d lookup tables for real-time image enhancement with bilateral grids. ECCV2024



Method

« Decomposition into lower dimension

#referenced vertices

- The utilization rate (

#generated vertices

«100) Show that 3D are redundant and 1D are saturated.

- Most of the higher occurrence frequencies are distributed in a specific region.
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Method

« Hypothesis
- The combination of 2D LUTs and bilateral grids can serve as an alternative to 3D LUTs and bilateral grids.
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* \erification

- We assess the PSNR(model size) under different dimensions

Bilateral grid
3D 2D 1D
3D | 25.68 (1.3M) 25.67 (1.1M) 25.54 (1.0M)
LUT | 2D | 25.67 (421.5K) 638 (205.3K) | 25.53 (161.2k)
1D | 25.37 (335.9K) | 25.53 (119.8K) | 25.22 (75.7K)




Method

« Example of spatial feature fusion

- The LUT maintains its performance with up to eight singular values.
- The bilateral grid experiences a performance drop from the beginning.
- We decide to apply SVD to the LUT but not to the bilateral grid.
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Method

« Cache-Effective Spatial Feature Fusion

- Previous spatial feature fusion read high-resolution input and write high-resolution intermediate outputs.
- We conduct slicing and LUT transformation at the same time.
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Experiments

e Datasets

- FiveK (expert C)
= 4,500 training set/ 500 testing set
» Photo retouch task (8-bit SRGB - 8-bit SRGB) / Tone mapping task (16-bit XYZ - 8-bit SRGB)

- PPR10K (expert a/b/c)
= 8,875 training set/ 2,286 testing set
= Photo retouch task (16-bit SRGB - 8-bit SRGB)

* Loss Function
L = Lyse +0.005 % L, + 0.05 L,

L. - MSE loss
- L, : perceptual loss

- L. : color difference loss



Experiments

 Quantitative comparison results of photo retouch on the FiveK

- This results shows that our method alleviate the intrinsic problems of the spatial-aware LUT method,
the tremendous model size, and the long inference time.

Method #param 480p Full Resolution (4K)
PSNR SSIM AF,, Runtime(ms) | PSNR SSIM AE,, Runtime (ms)

UPE [37] 927.1K | 21.88 0.853 10.80 4.27 21.65 0859 11.09 56.88

DPE [9] 3.4M 23775 0908 9.34 71.21 - - - -
HDRNet [12] 483.1K | 2466 0915 8.06 3.49 2452  0.921 8.20 56.07

DeepLPF [33] 1.7M 2473 0916 7.99 32.12 - - - -
CSRNet [13] 364K | 25.19 0925 7.76 3.09 2482 0924 794 77.10
3D LUT [46] 593.5K | 25.29 0.923  7.55 1.02 2525 0932 7.59 1.04
SA-3DLUT™ [38] 4 5SM 25.50 / / 2.27 / / / 4.39
SepLUT™ [44] 119.8K | 2547 0.921 7.54 1.10 2543 0932 7.56 1.20
Adalnt [43] 619.7K | 2549 0926 747 1.29 2548 0934  7.45 1.59
SABLUT [22] 463.7K | 25.66 0930 7.29 1.20 2566 0937 7.27 3.64

0.931 0.938
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Thank you

Github: https://github.com/WontaeaeKim/SVDLUT.git



