

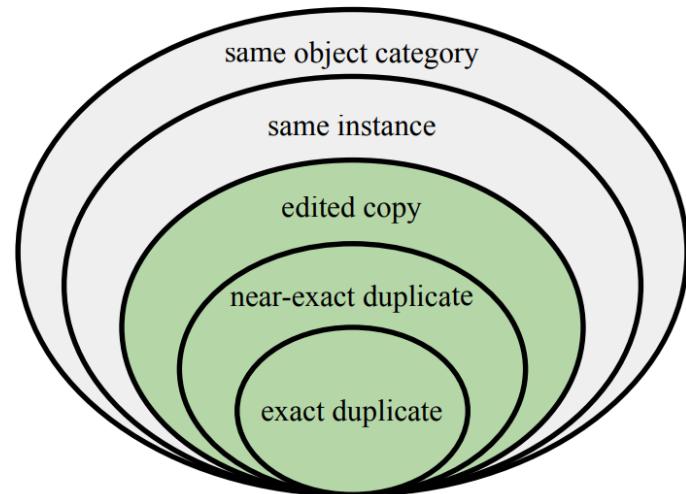
Tracing Copied Pixels and Regularizing Patch Affinity in Copy Detection

Yichen Lu · Siwei Nie · Minlong Lu · Xudong Yang · Xiaobo Zhang · Peng Zhang

Background

Fundamental Task

“determine whether a part of an image has been *copied* from another image”^[1]



Basic Copy Detection Pipeline

To determine whether a given query (Q) is a copy or an edited copy of an image within a reference database (R), a two-stage pipeline is employed:

- *Coarse-grained Retrieval* based on global feature similarity with *descriptor*
- *Fine-grained Matching* based on detailed, one-to-one comparison with *matcher*

[1]. Douze M, Tolias G, Pizzi E, et al. The 2021 image similarity dataset and challenge[J]. arXiv preprint arXiv:2106.09672, 2021.

Background

SSL Training in Copy Detection

Generate image pairs (original vs. edited copy) via Self-Supervised Learning (SSL).

Limitation 1: Coarse-grained Labels

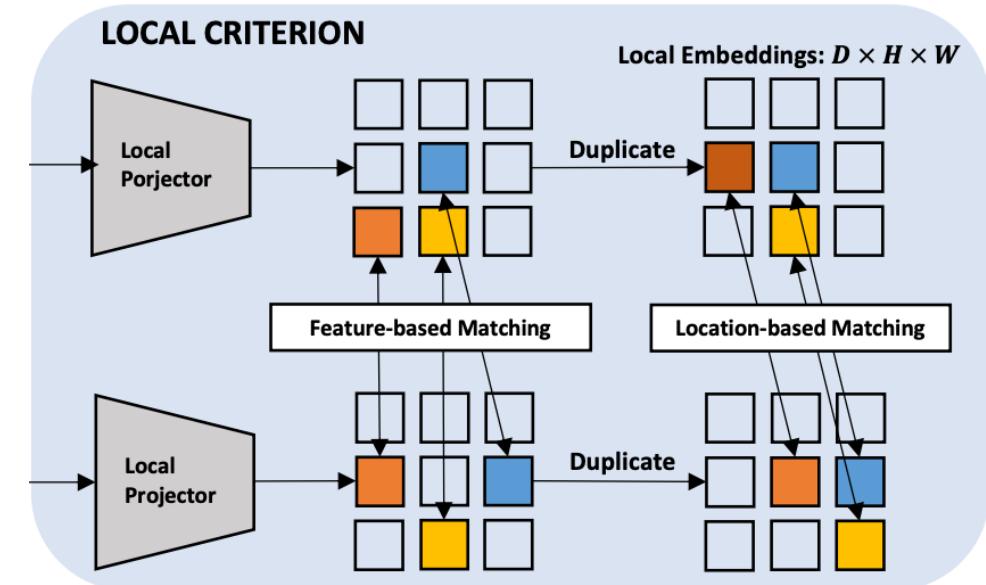
- Difficulty in detecting complex edited copies.
- Difficulty in detecting small, local copied regions.

SSL Strikes Back^[1, 2]

Create patch-level pseudo-labels with feature or location matching, e.g. k -NN

Limitation 2: Noise

- False Positives
- False Negatives
- Partial Match
- Fixed- k Mismatch



[1]. Li C, Yang J, Zhang P, et al. Efficient self-supervised vision transformers for representation learning. ICLR 2022.

[2]. Bardes A, Ponce J, LeCun Y. Vicregl: Self-supervised learning of local visual features. NeurIPS 2022.

Motivation

Ideal Annotations for Copy Detection

- Fine-Grained: Pixel-level annotation of copied regions.
- Clean & Noise-Free: Exact coordinate correspondence.

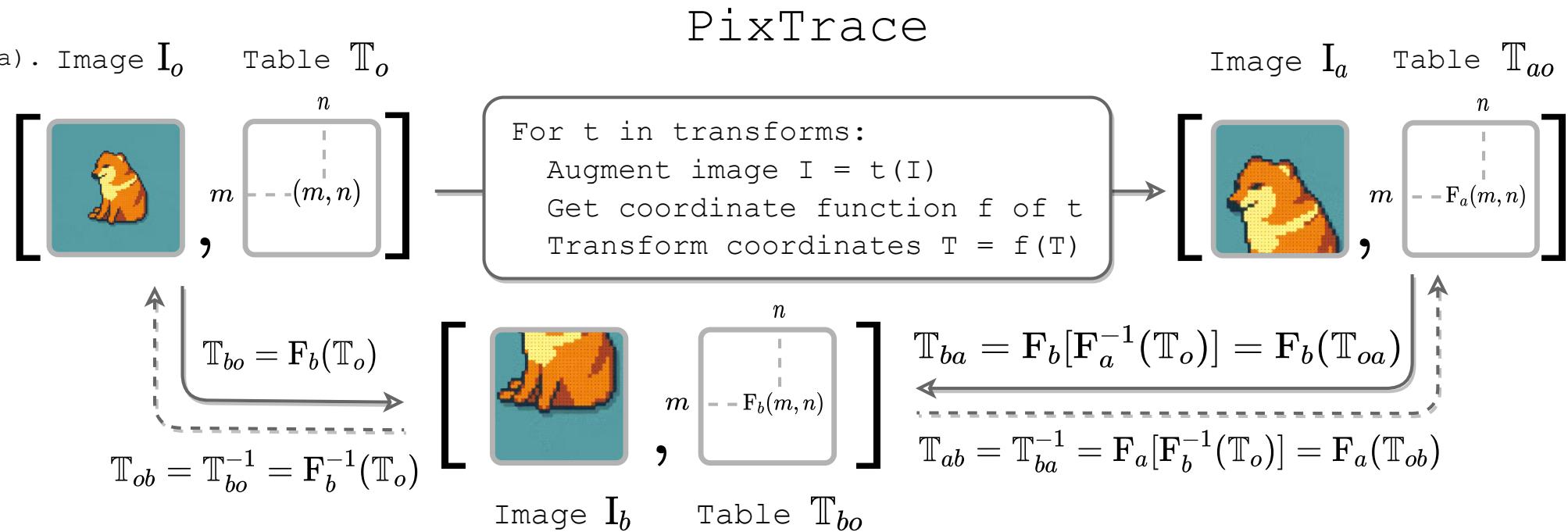
Traceability of Copied Pixels

Pixel correspondences between original and edited regions can be traced through sequential editing operations.

PixTrace

Key Features

- Builds *precise pixel-level* correspondences between original and its copy edit images.
- Maintains pixel traceability even under multiple, complex transformations.
- Supports *reversible (bi-directional)* pixel tracing.
- Enables pixel tracing between *different copies originating from a shared source*.



CopyNCE

- Maximize mutual information between original and copy regions

$$\begin{aligned}\mathcal{L}_{\text{CopyNCE}}^{\#1} &= -\log p(\mathcal{R}^r | \mathcal{R}^X, \mathcal{R}^q) \\ &= -\log \frac{f_\theta(\mathcal{R}^q, \mathcal{R}^r)}{\sum_{\mathcal{R}^x \in \mathcal{R}^X} f_\theta(\mathcal{R}^q, \mathcal{R}^x)},\end{aligned}$$

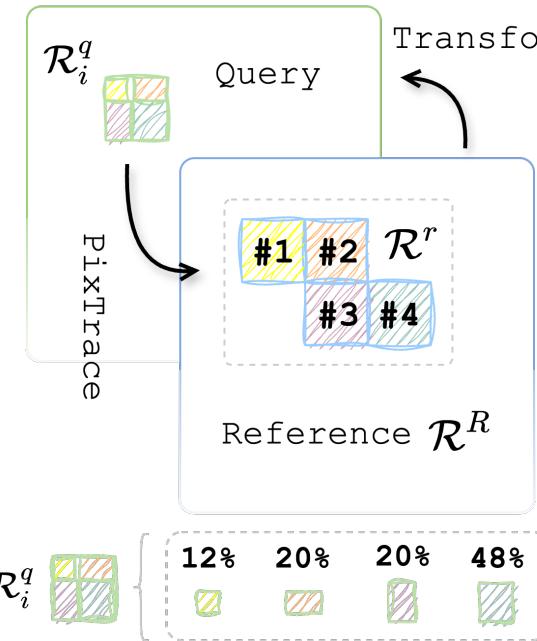
- Decompose regions into patches

$$\begin{aligned}\mathcal{L}_{\text{CopyNCE}}^{\#2} &= \mathbb{E}_{\mathcal{R}_i^q} [-\log p(\mathcal{R}_{i+}^r | \mathcal{R}^X, \mathcal{R}_i^q)] \\ &= \mathbb{E}_{\mathcal{R}_i^q} [-\log \frac{g_\theta(\mathcal{R}_i^q, \mathcal{R}_{i+}^r)}{\sum_{\mathcal{R}^x \in \mathcal{R}^X} g_\theta(\mathcal{R}_i^q, \mathcal{R}^x)}].\end{aligned}$$

- Regularize patch affinity with the patch overlap ratio

$$\begin{aligned}\mathcal{L}_{\text{CopyNCE}}^{\#3}(q, r, \mathbb{T}_{qr}) \\ = \mathbb{E}_{\mathcal{R}_i^q} \left[\sum_{\mathcal{R}_j^r \in \mathcal{R}^r} q(\mathcal{R}_j^r, \mathcal{R}_i^q) \underbrace{[-\log p(\mathcal{R}_j^r | \mathcal{R}^X, \mathcal{R}_i^q)]}_{\text{InfoNCE}} \right]\end{aligned}$$

- Derive the final symmetric form



Transforms CopyNCE for \mathcal{R}_i^q

$$\begin{aligned}&= -q(\text{Patch 1} | \text{Patch 1}) \log p(\mathcal{R}_{\#1}^r | \mathcal{R}_i^q, \mathcal{R}^R) \\ &\quad -q(\text{Patch 2} | \text{Patch 2}) \log p(\mathcal{R}_{\#2}^r | \mathcal{R}_i^q, \mathcal{R}^R) \\ &\quad -q(\text{Patch 3} | \text{Patch 3}) \log p(\mathcal{R}_{\#3}^r | \mathcal{R}_i^q, \mathcal{R}^R) \\ &\quad -q(\text{Patch 4} | \text{Patch 4}) \log p(\mathcal{R}_{\#4}^r | \mathcal{R}_i^q, \mathcal{R}^R)\end{aligned}$$

$$q(\mathcal{R}_j^r | \mathcal{R}_i^q) = \frac{\hat{q}(\mathcal{R}_j^r | \mathcal{R}_i^q)^\gamma}{\sum_{\mathcal{R}_k^r \in \mathcal{R}^r} \hat{q}(\mathcal{R}_k^r | \mathcal{R}_i^q)^\gamma} \quad \hat{q}(\mathcal{R}_j^r | \mathcal{R}_i^q) = \frac{|\{\mathbb{T}[c] \in \mathcal{R}_j^r | c \in \mathcal{R}_i^q\}|}{|\mathcal{R}_i^q|}$$

$$\mathcal{L}_{\text{CopyNCE}} = \frac{1}{2} [\mathcal{L}_{\text{CopyNCE}}^{\#3}(q, r, \mathbb{T}_{qr}) + \mathcal{L}_{\text{CopyNCE}}^{\#3}(r, q, \mathbb{T}_{rq})]$$

Comparison with SOTAs

Matcher	Settings			Metrics	
	Arch	Res.	Local	μ AP	RP90
Separate [‡] [24]	ViT-S		✗	75.4	68.7
	ViT-B	224 × 112	✗	78.4	72.9
	ViT-L		✗	84.7	80.3
CopyNCE	ViT-S	224 × 224	✗	83.5	75.4
CopyNCE	ViT-S	336 × 336	✗	85.8	79.9
ImgFp [42]	EsViT-B	224 × 224	✓	61.2	-
Separate [‡] [24]	ViT-S		✓	77.1	70.5
	ViT-B	224 × 112	✓	80.7	75.6
	ViT-L		✓	86.2	82.2
D ² LV [48]	Multi	256 × 256	✓	88.6	80.1
CopyNCE	ViT-S	224 × 224	✓	87.4	81.3
CopyNCE	ViT-S	336 × 336	✓	88.7	83.9

Descriptor	Settings			Metrics	
	Arch	Res.	Pre/Post	μ AP	RP90
DINO [3]	ViT-S	224 × 224	✗	20.0	6.8
S-square [†] [33]	EffNet-B5	160 × 160	✗	66.4	-
Lyakaap [†] [59]	EffNetV2-M	512 × 512	✗	64.3	56.6
SSCD [35]	R50	Long × 288	✗	61.5	38.3
CopyNCE	ViT-S	224 × 224	✗	70.5	63.6
BoT [49]	R50	224 × 224	Str	70.5	61.6
			YL / Str	71.5	62.9
SSCD [35]	R50	Long × 288	SN	72.5	63.1
CopyNCE	ViT-S	224 × 224	SN	72.6	68.4

Table 1. **Comparison with other SOTA methods.** **Left** is for matcher and **Right** is for descriptor. **Local** denotes inference ensembling with multiple local crops. **Pre/Post** is the pre-/post-processing, in which **SN** is score normalization, **YL** is YOLO pre-processing and **Str** is feature stretching. [†] denotes the method leverages extra data for training. [‡] means that we reproduce the results with its open-source code. **Multi** in D²LV stands for 11×R50 [16], 11×R152 [16] and 11×R50IBN [57].

Outperforms SOTAs *across* various *resolutions*, *pre/post-processing*, and enhancement *tricks*.

Ablation Studies & Param Analysis

Descriptor

Method	Parameter	μ AP	Parameter	μ AP
CopyNCE	default	70.5	$w_{NCE} = 0$	68.9
	$w_{NCE} = 3$	70.5	$w_{NCE} = 8$	69.9
	$\gamma = 0$	67.9	$\gamma = 0.5$	69.7
	$\gamma = 1$	70.0	$\gamma = 2$	70.4
	$\gamma = 3$	70.5	$\gamma = +\infty$	70.1
	w/o NCE	68.6	layer=10	70.3
	w/o GHNM	57.7	w/o GHNM	61.8
	$w_{NCE} = 0$		$w_{NCE} = 5$	
	R50	62.7	R50	64.0
	$w_{NCE} = 0$		$w_{NCE} = 5$	
FeatNN Cos	$k = 1$	56.5	$k = 4$	48.1
FeatNN NCE	$k = 1$	57.0	$k = 4$	42.6
LocNN Cos	$k = 1$	67.7	$k = 4$	67.2
LocNN NCE	$k = 1$	64.7	$k = 4$	64.2
Both Cos	$k = 1$	68.5	$k = 4$	66.0
Both NCE	$k = 1$	64.9	$k = 4$	64.3

$w_{NCE} = 5$ brings **+1.6% μ AP** gain over baseline

More significant over basic settings

Also **effective with CNN-based architecture**

Alternative methods (e.g. **k -NN** on features or patch centers) **fail to surpass the baseline due to noise**, highlighting the **necessity of noise-free supervision for copy detection**.

Ablation Studies & Param Analysis

Matcher

Method	Parameter	μ AP	Parameter	μ AP
CopyNCE	default	83.5	$w_{NCE} = 0$	70.9
	$w_{NCE} = 1$	81.7	$w_{NCE} = 5$	83.5
	$\gamma = 0$	82.5	$\gamma = 0.5$	82.6
	$\gamma = 1$	83.5	$\gamma = 2$	82.9
	$\gamma = 3$	83.0	$\gamma = +\infty$	82.6
	enc-6-fus-6	84.0	enc-10-fus-2	79.4
FeatNN	Cos $k = 1$	Fail	NCE $k = 1$	Fail
LocNN	Cos $k = 1$	Fail	NCE $k = 1$	78.7
Both	Cos $k = 1$	Fail	NCE $k = 1$	80.8

$w_{NCE} = 3$ brings **+12.6% μ AP** gain over baseline

While feature k -NN collapses due to noise, patch-center k -NN offers a **+7.8% μ AP** gain. Even the best combination of **these k -NN methods** is still **outperformed by CopyNCE**, with a remaining **2.7% μ AP gap**.

More Experiments

Comparison with DISC21 leaderboard

Descriptor Track			Matching Track		
Team	μ AP	RP90	Team	μ AP	RP90
CopyNCE [†]	65.8	61.0	CopyNCE [†]	85.6	80.0
lyakaap [†]	63.5	55.4	CopyNCE	84.6	78.2
CopyNCE	60.9	56.7	VisionForce	83.3	73.1
S-square	59.1	50.9	separate [†]	82.9	79.2
visionForce	57.9	48.9	imgFp [†]	76.8	67.2

Table 4. **Leaderboard of DISC21 Phase 2.** [†] denotes the results achieved after finetuning on dev set part I. Note that finetuning is allowed by official rules [34].

Results on VSC2022

	SSCD SN [35]	ViT-S SN	ViT-B SN
Descriptor μ AP	64.99	70.59	71.57
Matching μ AP	46.92	51.32	50.05

Table 8. **Results on VSC2022.** Results are produced by official baseline implementation of VSC2022 on its training set.

Results on AnyPattern

Method	μ AP	R@1	Method	μ AP	R@1
SSCD [35]	14.22	20.24	ViT-S	27.07	34.68
S-square [33]	14.51	21.05	ViT-B	31.66	37.78
Lyakaap [59]	13.80	18.02	ViT-S [†]	25.38	31.57
AnyPat. Base. [51]	16.18	20.54	ViT-B [†]	28.05	34.36

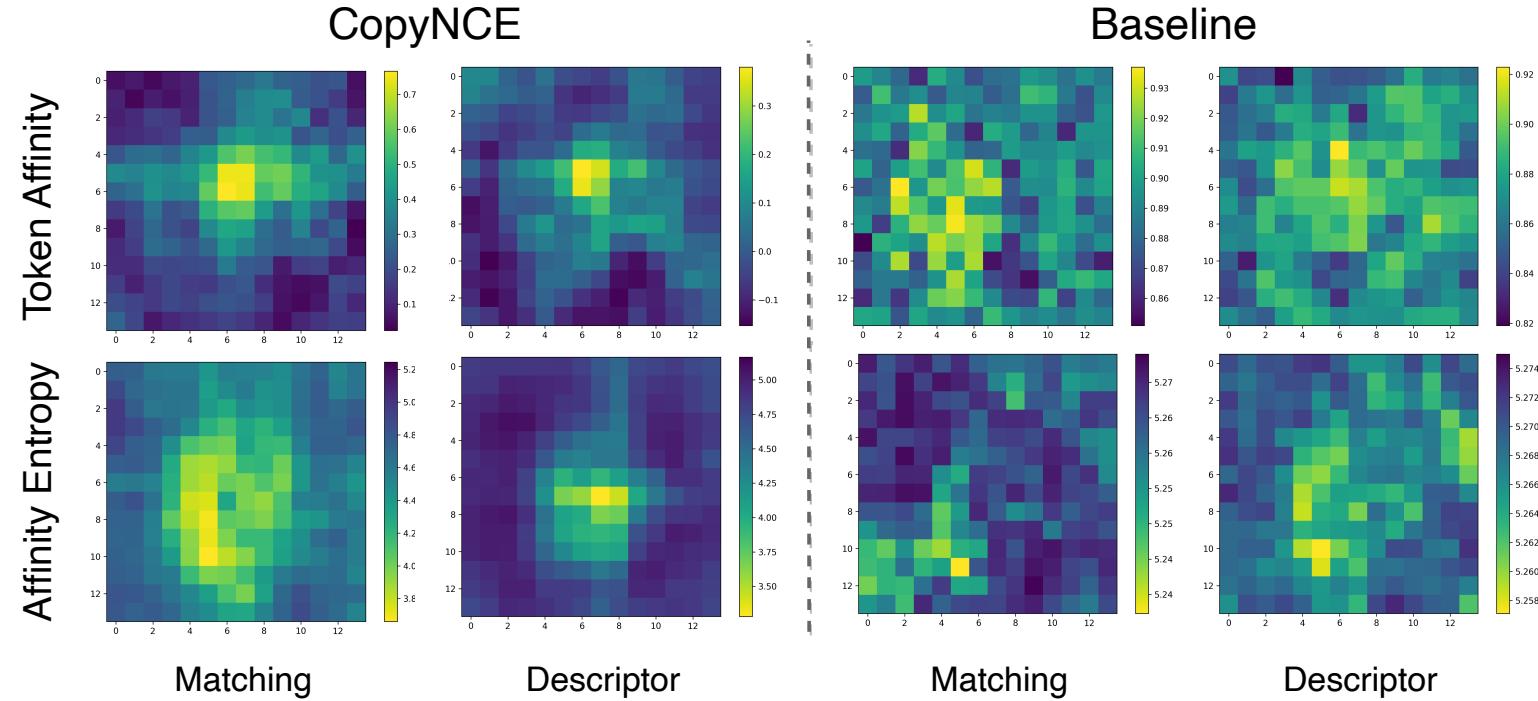
Table 7. **Results on AnyPattern.** All methods are evaluated with “SmallPattern” protocol . “AnyPat. Base.” denotes Baseline in AnyPattern. CopyNCE results are marked in blue and [†] means results achieved with augmentations that aligned with Lyakaap.

Results on NDEC without finetuning on NDEC

Method	Model Arch.	μ AP	RP90
CopyNCE	ViT-B+ViT-S	72.5	36.8
Strong ASL	Multi	64.1	-
D ² LV ASL	Multi	61.3	-

Table 5. **Results on NDEC.** Multi in “D²LV ASL” and “Strong ASL” stands for 11×R50, 11×R152 and 11×R50IBN.

Visualization



Affinity entropy is defined as: $\mathcal{E}_i = - \sum_j p_{ij} \log p_{ij}$, $p_{ij} = \frac{\exp(\cos(z_i^q, z_j^r)/\tau)}{\sum_k \exp(\cos(z_i^q, z_k^r)/\tau)}$.

Lower Affinity Entropy → Higher likelihood of an edited copy region.

Key takeaways

Annotation

Before

Global annotation

- Coarse-grained
- Noisy heuristic

Traceability of Copied Pixels

After

PixTrace

- *Fine-grained*: Pixel-level annotation of copied regions
- *Noise-free*: Precise coordinate correspondence

Loss Function

Baseline

- Descriptor: Global contrastive and metric learning
- Matcher: BCE

Guidance from PixTrace

CopyNCE

- *Regularization of Patch Affinity*