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The Challenge:

Digital Media Authentication Challenges

Advanced Image Processing Transform-based Methods

Al tools enable easy image forgery and redistribution, threatening content Lack robustness against image processing operations like resizing,
ownership verification cropping, compression, and noise

Invisible Watermarking Deep Learning Methods

Embeds invisible information to verify authenticity while maintaining StegaStamp, Stable Signature, and HiDDeN show fragility when handling
image quality common image processing operations

Fundamental Trade-off Adversarial Attacks

Basic balance between imperceptibility and robustness against Noise injection, blurring, contrast adjustment, and rotation significantly
transformations impact watermark performance

Image Regeneration
Methods like DiffusionDB, Rinse, and AdvEmb show poor robustness

against regeneration attacks



Guard: Method Overview

Core Concept

SpecGuard is a novel robust and invisible
image watermarking method that strategically
embeds watermark information in the spectral
domain for enhanced protection against various

image transformations.

Unlike traditional frequency domain methods Cover Image
that are easily destroyed by image operations,
SpecGuard maintains imperceptibility while

significantly improving robustness. WavelcliDccomBosiee RGASIELS

Watermarked Image

Encoder: Embeds watermark using wavelet

and spectral projection

Decoder: Extracts watermark with robust

Parseval-based approach

Strategic Embedding
Distributes watermark across
high-frequency components using

wavelet-based decomposition

Enhanced Robustness
Maintains imperceptibility while improving
resilience against transformations and

attacks

Parseval's Theorem
Ensures energy conservation between
spatial and frequency domains, preserving

watermark integrity

Optimal Balance
Achieves near-perfect balance between

imperceptibility and robustness



Technical Architecture:

Cover Image | Wavelet Projection

Original image Decomposition into subbands
Binary Message M Message Processing
Watermark to embed Reshaping and expansion

Wavelet Projection (WP)

Captures frequency and spatial localization features at different scales using wavelet

functions

Targeted Embedding

Uses radial mask centered on high-frequency band S for embedding

. Watermarked Image
Spectral Projection

FFT-based approximation

lembedded
Target Region Watermark Embedding
Radial mask with radius r Controlled by strength factor s

Spectral Projection (SP)
Converts to frequency domain using FFT approximation, enabling embedding in

high-frequency components

Reconstruction

Inverse transforms (IWP and ISP) to convert back to spatial domain while preserving
modifications



(WP)

Capturing Multi-scale Features

Wavelet projection captures frequency and spatial
localization features at different scales through orthogonal

wavelet sets.

2D Decomposition
For 2D input, WP defines basis elements in:

. Horizontal direction
. Vertical direction
. Diagonal direction

Decomposition Level

Level k determined by image complexity:

k = LV(log(1+N))J

Where N is total pixels in cover image

Wavelet Projection Visualization

Ol ~ 7 T~

Level 2 (Mid freq) Level 3 (High freq)

Key Properties

Orthogonal basis functions Multi-resolution analysis

Local frequency representation Energy preservation



Spectral Projection

Process Overview

1 Symmetric Extension S,(w,V) = Re{FFT[T(x,y)]

Mirror along boundaries to create symmetric extension
9 y Where Re{} denotes the real part of the complex FFT coefficients

2 2D FFT Application Visual Process Flow

Apply 2D Fast Fourier Transform to to obtain frequency domain

representation

3 Real Part Extraction
Approximate spectral coefficients by taking the real part of the FFT

operation in the original region

SpeCtraI PI"OjeCtIOI'I Benefits Input ImageSymmetric Extension 2D FFT Spectral DomWatermark Embedd

. Separates input into low and high frequencies
. High-frequency subband provides details for embedding

. Preserves energy distribution while enabling selective modification
. Facilitates robust watermarking against transformations



Technical Architecture:

Watermarked Image Wavelet Projection Spectral Projection Radial Masking Message Extraction

Wavelet Projection Radial Masking
Separates watermarked image into low-frequency (S ) and high-frequency Creates mask based on Euclidean distance from center point to isolate
(Spyy) bands high-frequency regions within radius r

Spectral Projection Approximation Message Extraction
Applies FFT-based spectral projection to high-frequency band, returning Compares mask values with learnable threshold 0 to decode message bits:
transformed data S, , D[i] = 1 if Extracted[i] > 0, else O

Feature Refinement Parseval Theorem
Sequential convolutional layers with LeakyReLU activation further refine the Ensures energy conservation between spatial and frequency domains,
features: S, = LeakyReLU(Conv, (S, *(n), K) maintaining message integrity while adapting to image's spectral pattern



r’Embedding & Process

Embedding Process

1. Image Decomposition ' Wavelet Projection
Cover image | decomposed into frequency subbands: S _LL, S LH, Applied to watermark image |_embedded, separating into low and high
S HL,and S _HH frequency bands
2 Message Preparation @ Spectral Projection
Message M reshaped and expanded to align with S_HH FFT applied to high-frequency band S_D_HH”high
3 Radial Mask Creation ' Feature Refinement
Based on Euclidean distance from center point, embedding within radius Convolutional layers further refine S_DH to capture local features
.
— Radius r

@ Adaptive Threshold Optimization

Radial mask isolates high-frequency regions in S_DH

. Mask values compared with learnable threshold 8 to decode message
4 Embedding it
its

Controlled by strength factor s, embedding message into S_HH Message

Multiple convolutional layers with LeakyRelLU activation e -



Loss Function

Encoder Loss (L)

Minimizes the difference between the original image and the watermarked

image to maintain cover image fidelity

min, E L (LI

— 2
0 ~(ILM)~D “enc embedded) . ||E9(I’ M) - I“

Visual Fidelity: Ensures the watermarked image is perceptually

indistinguishable from the original

Combined Loss Function

mine L= L +A L
enc ~_enc dec ~dec

Weighted coefficients balance visual fidelity and message recoverability

Decoder Loss (L)

Minimizes the difference between the original message and the extracted

message to ensure reliable message retrieval

; = 2
ming B, o 5 Ly (M, D) = DT pedaea) = Ml

Message Integrity: Ensures accurate extraction of the embedded message

enc
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Experimental Results:

Perceptual Quality Metrics

50
45
40
~—35
O 30
e
o 25
= 20
(V]
o 15
10

EID: 17
SSIM: 0.99
FID: 17.7 '
SSIM: 0.91 FID: 19.6 FID: 18.2
e SSIM: 0.89 SSIM: 0.9
O ) 5o «®
SQQCG\) ’(‘ee‘?\ 5\‘3‘0\2 6\6936\3

Superior Performance: SpecGuard achieves higher PSNR (42.59-42.89) and SSIM
(0.98-0.99) values compared to state-of-the-art methods
Minimal Visual Degradation: FID values remain low (17.0-17.6), indicating minimal visual

impact
Cross-Dataset Consistency: Excellent performance across different datasets

(DiffusionDB, MS-COCO, DALL-E3)
Bit Recovery Accuracy: SpecGuard maintains high BRA (0.98-0.99) while keeping
imperceptibility

Visual Comparison
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Figure 3. Some best results for cover vs watermarked images with
PSNR/SSIM (1) scores showing minimal visual degradation when
watermarked using proposed SpecGuard.

Original vs. watermarked images with minimal visual degradation
(PSNR/SSIM scores shown)

MS-COCO dataset (25K images)
DiffusionDB, MS-COCO, DALL-E3
30-bit fixed length
PSNR, SSIM, FID, MSE, BRA



Experimental Results:

SpecGuard demonstrates exceptional robustness against diverse attacks compared to SOTA methods.

Performance Comparison

Tree-Ring [53] Stable Signature [37] StegaStamp [47] SpecGuard (Ours)
Q@0.95P Q@0.7P AvgP Avg Q| Q@0.95P Q@0.7P AvgP Avg Q Q@0.95P Q@0.7P Avg P Avg Q Q@0.95P Q@0.7P AvgP .
Rotation 0.464 0.521 0.375 0.624 0.702  0.594 0.65 0423 0.498 X 0.863 0863 0.687
Crop 0.592 0592 0.332 inf inf 0.995 0. 0.602 0.602 2 0.812 0812 0.998
Bright inf inf inf inf inf 0998 0. inf inf 3 inf inf 0998
Contrast inf inf 0.998 inf inf 0998 0. inf inf 5 inf inf 0998
Blur 0.861 1.112  0.563 —inf —inf 0.000 1. 0.848 0.962 4 0.921 inf 1.000
Noise 0.548 inf 0.980 0.402 0.520 0.870 0. inf inf b inf inf 0.999
JPEG 0.499 0499  0.929 0.485 0485 0.793 0. inf inf 2 inf inf 1.000
Geo 0.525 0.593 0.277 0.850 inf 0937 0. 0.663 0.693 g 0.869 0.865
Deg 0.620 inf 0.892 0.206 0.369 0.300 0. 0.826 0.975 ¥ 0.895 0915
Combine 0.539 0.751 0403 0.538 0.691 0334 0. 0.945 1.101 X 0.979 0911
Regen-Diff —inf 0.307 0.612 0.001 0. : inf 0.982
Regen-DiffP inf 0.307  0.601 0.001 0. s inf i 0.982
Regen-VAE 0.578 0.578 0.832 0.516 0.3 K inf i 0.995
Regen-KLVAE inf inf 0.990 0.217 0. 2 inf i 0.990
Rinse-2xDiff —inf 0.333  0.510 0.001 0. E inf i 0.993
Rinse-4xDiff — inf 0.355 0443 0.000 0. ¥ inf i 0.992
AdvEmbG-KLVAES — inf 0.164  0.448 E K inf i 1.000
AdvEmbB-RNI18 0.241 inf 0953 ¥ A inf i 1.000
AdvEmbB-CLIP 0.541 inf 0.932 2 : inf i 1.000
AdvEmbB-KLVAEI16 0.195 inf 0.888 ;23 5 inf i 1.000
AdvEmbB-SdxIVAE 0.222 inf 0934 .2 E inf i 1.000
AdvCls-UnWM&WM  — inf 0.102 0499 5 ; inf i 1.000
AdvCls-Real &« WM inf inf 1.000 K b inf i 1.000
AdvCls-WMI1&WM2 —inf 0.101  0.492 ki 2 inf i 1.000

Attack Type

Distortions

Regeneration
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Table 3. Robustness comparison various across attacks using Q@0.95P(1), Q@0.7P(1), Avg P(1) and Avg Q(1). Here, ‘inf’ denotes that
no attack was sufficient to degrade performance below the threshold, indicating strong robustness, whereas ‘-inf” signifies that even the
weakest attack caused detection to fall below the threshold, reflecting weak robustness.

Table 4. Ablation studies on the proposed SpecGuard for across
various configurations, setting M = 128, r = 100, and s = 20.

Platform PSNR/SSIM1T BRAT | PS Filters PSNR/SSIMT BRAT
Facebook 48.56/0.97 ; Depth Blur 25.25/0.89
LinkedIn 47.55/0.97 . StyleT. 25.12/0.84
Instagram 48.56/0.98 £ Super Zoom 36.15/0.88
WhatsApp 42.10/0.96 ; JPEG Artifacts ~ 31.01/0.85
X (Twitter) 49.25/1.00 X Colorize 23.15/0.82

Geometric Distortions

SpecGuard achieves 0.998 for Avg P under crop attacks

Regeneration Attacks
Shows strong robustness against Regen and Rinse

attacks

Adversarial Attacks
Outperforms other methods under AdvEmb and AdvCls

attacks

Social Media Platforms

Maintains high performance across Facebook, Instagram,
WhatsApp



Key Advantages of

SpecGuard
Robustness

(O I

SpecGuard: Optimizing the Fundamental Trade-off

Superior High Embedding Capacity Enhanced Attack Resilience
Imperceptibility-Robustness - Superior BRA (0.98-0.99) at 256 bit
Balance length «  High robustness against geometric
*  High PSNR (40.36-48.17) and SSIM - No BRA degradation with higher distortions (Crop: 0.812, Bright: 0.998)
(0.989-0.994) message lengths
* LowFID (16.45-17.45) and MSE values «  Outperforms StegaStamp and HiDDeN at *  ExcellentAvg P (0.911) and Avg Q
Near-zero visual degradation while all tested lengths (0.952)
maintaining robustness +  Strong resistance against regeneration

and adversarial attacks

Social Media & PNF Resilience
Maintains high performance (PSNR/SSIM > 48.56/0.97, BRA > 0.97) across Facebook, Instagram, WhatsApp and other platforms and filters



Thank You &

We appreciate your attention and valuable feedback

Protecting digital media authenticity through robust spectral watermarking

Questions & Discussion

We welcome your questions about SpecGuard implementation,

applications, and future research directions
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