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The Challenge: Digital Media Protection

Digital Media Authentication Challenges

Advanced Image Processing
AI tools enable easy image forgery and redistribution, threatening content 

ownership verification

Invisible Watermarking
Embeds invisible information to verify authenticity while maintaining 

image quality

Fundamental Trade-off
Basic balance between imperceptibility and robustness against 

transformations

Limitations of Existing Methods

Transform-based Methods
Lack robustness against image processing operations like resizing, 

cropping, compression, and noise

Deep Learning Methods
StegaStamp, Stable Signature, and HiDDeN show fragility when handling 

common image processing operations

Adversarial Attacks
Noise injection, blurring, contrast adjustment, and rotation significantly 

impact watermark performance

Image Regeneration
Methods like DiffusionDB, Rinse, and AdvEmb show poor robustness 

against regeneration attacks



SpecGuard: Method Overview

Core Concept

SpecGuard is a novel robust and invisible 

image watermarking method that strategically 

embeds watermark information in the spectral 

domain for enhanced protection against various 

image transformations.

Unlike traditional frequency domain methods 

that are easily destroyed by image operations, 

SpecGuard maintains imperceptibility while 

significantly improving robustness.

Key Modules

Encoder: Embeds watermark using wavelet 

and spectral projection

Decoder: Extracts watermark with robust 

Parseval-based approach

Cover Image

Wavelet Decomposition Watermark

Watermarked Image

Key Features

Strategic Embedding
Distributes watermark across 

high-frequency components using 

wavelet-based decomposition

Enhanced Robustness
Maintains imperceptibility while improving 

resilience against transformations and 

attacks

Parseval's Theorem
Ensures energy conservation between 

spatial and frequency domains, preserving 

watermark integrity

Optimal Balance
Achieves near-perfect balance between 

imperceptibility and robustness



Technical Architecture: Encoder

Cover Image I
Original image

Wavelet Projection
Decomposition into subbands

Spectral Projection
FFT-based approximation

Watermarked Image

Iembedded

Embedding Process

Binary Message M
Watermark to embed

Message Processing
Reshaping and expansion

Target Region
Radial mask with radius r

Watermark Embedding
Controlled by strength factor s

Wavelet Projection (WP)
Captures frequency and spatial localization features at different scales using wavelet 

functions

Spectral Projection (SP)
Converts to frequency domain using FFT approximation, enabling embedding in 

high-frequency components

Targeted Embedding
Uses radial mask centered on high-frequency band S for embedding

Reconstruction
Inverse transforms (IWP and ISP) to convert back to spatial domain while preserving 

modifications



Wavelet Projection (WP)

Capturing Multi-scale Features

Wavelet projection captures frequency and spatial 

localization features at different scales through orthogonal 

wavelet sets.

2D Decomposition

For 2D input, WP defines basis elements in:

• Horizontal direction
• Vertical direction
• Diagonal direction

Decomposition Level

Level κ determined by image complexity:

κ = ⌊√(log(1+N))⌋

Where N is total pixels in cover image

Wavelet Projection Visualization

Key Properties

Orthogonal basis functions Multi-resolution analysis

Local frequency representation Energy preservation



Spectral Projection Approximation

Process Overview

1 Symmetric Extension
Mirror T(x,y) along boundaries to create symmetric extension T̃(x,y)

2 2D FFT Application
Apply 2D Fast Fourier Transform to T̃(x,y) to obtain frequency domain 

representation

3 Real Part Extraction
Approximate spectral coefficients by taking the real part of the FFT 

operation in the original N×N region

Spectral Projection Benefits

• Separates input into low and high frequencies

• High-frequency subband SHH provides details for embedding

• Preserves energy distribution while enabling selective modification
• Facilitates robust watermarking against transformations

Spectral Projection Formula

SHH(u,v) ≈ Re{FFT[T̃(x,y)]real

Where Re{} denotes the real part of the complex FFT coefficients

Visual Process Flow



Technical Architecture: Decoder

Watermarked Image Wavelet Projection Spectral Projection Radial Masking Message Extraction

Wavelet Projection
Separates watermarked image into low-frequency (SDLL) and high-frequency 

(SDHH) bands

Spectral Projection Approximation
Applies FFT-based spectral projection to high-frequency band, returning 

transformed data SDHH

Feature Refinement
Sequential convolutional layers with LeakyReLU activation further refine the 

features: SDHH = LeakyReLU(Conv2D(SDHH
sp(n), K)

Radial Masking
Creates mask based on Euclidean distance from center point to isolate 

high-frequency regions within radius r

Message Extraction
Compares mask values with learnable threshold θ to decode message bits: 

D[i] = 1 if Extracted[i] > θ, else 0

Parseval Theorem
Ensures energy conservation between spatial and frequency domains, 

maintaining message integrity while adapting to image's spectral pattern



Embedding & Extraction Process

Embedding Process

1 Image Decomposition
Cover image I decomposed into frequency subbands: S_LL, S_LH, 

S_HL, and S_HH

2 Message Preparation
Message M reshaped and expanded to align with S_HH

3 Radial Mask Creation
Based on Euclidean distance from center point, embedding within radius 

r

4 Embedding
Controlled by strength factor s, embedding message into S_HH

Multiple convolutional layers with LeakyReLU activation

Extraction Process

1 Wavelet Projection
Applied to watermark image I_embedded, separating into low and high 

frequency bands

2 Spectral Projection
FFT applied to high-frequency band S_D_HH^high

3 Feature Refinement
Convolutional layers further refine S_DH to capture local features

4 Adaptive Threshold Optimization
Radial mask isolates high-frequency regions in S_DH

Mask values compared with learnable threshold θ to decode message 

bits



Loss Function Optimization

Encoder Loss (L)
Minimizes the difference between the original image and the watermarked 

image to maintain cover image fidelity

minθ E(I,M)~D Lenc(I, Iembedded) = ||Eθ(I, M) - I||2

Visual Fidelity: Ensures the watermarked image is perceptually 

indistinguishable from the original

Decoder Loss (L)
Minimizes the difference between the original message and the extracted 

message to ensure reliable message retrieval

minθ E(I,M)~D Ldec(M, DM) = ||Dθ(Iembedded) - M||2

Message Integrity: Ensures accurate extraction of the embedded message

Combined Loss Function

minθ L = λenc Lenc + λdec Ldec

Weighted coefficients balance visual fidelity and message recoverability

λenc = 0.7

λ 



Experimental Results: Imperceptibility

Perceptual Quality Metrics

Key Findings

• Superior Performance: SpecGuard achieves higher PSNR (42.59-42.89) and SSIM 

(0.98-0.99) values compared to state-of-the-art methods

• Minimal Visual Degradation: FID values remain low (17.0-17.6), indicating minimal visual 

impact
• Cross-Dataset Consistency: Excellent performance across different datasets 

(DiffusionDB, MS-COCO, DALL-E3)

• Bit Recovery Accuracy: SpecGuard maintains high BRA (0.98-0.99) while keeping 

imperceptibility

Visual Comparison

Original vs. watermarked images with minimal visual degradation 

(PSNR/SSIM scores shown)

Experimental Setup
• Training: MS-COCO dataset (25K images)

• Evaluation: DiffusionDB, MS-COCO, DALL-E3

• Message Length: 30-bit fixed length

• Metrics: PSNR, SSIM, FID, MSE, BRA



Experimental Results: Robustness
SpecGuard demonstrates exceptional robustness against diverse attacks compared to SOTA methods.

Performance Comparison

SpecGuard StegaStamp Tree-Ring Other Methods

Geometric Distortions
SpecGuard achieves 0.998 for Avg P under crop attacks

Regeneration Attacks
Shows strong robustness against Regen and Rinse 

attacks

Adversarial Attacks
Outperforms other methods under AdvEmb and AdvCls 

attacks

Social Media Platforms
Maintains high performance across Facebook, Instagram, 

WhatsApp



Key Advantages of SpecGuard

Superior 
Imperceptibility-Robustness 
Balance

• High PSNR (40.36-48.17) and SSIM 

(0.989-0.994)

• Low FID (16.45-17.45) and MSE values

• Near-zero visual degradation while 

maintaining robustness

High Embedding Capacity

• Superior BRA (0.98-0.99) at 256 bit 

length

• No BRA degradation with higher 

message lengths

• Outperforms StegaStamp and HiDDeN at 

all tested lengths

Enhanced Attack Resilience

• High robustness against geometric 

distortions (Crop: 0.812, Bright: 0.998)

• Excellent Avg P (0.911) and Avg Q 

(0.952)

• Strong resistance against regeneration 

and adversarial attacks

Social Media & PNF Resilience
Maintains high performance (PSNR/SSIM > 48.56/0.97, BRA > 0.97) across Facebook, Instagram, WhatsApp and other platforms and filters



Thank You & Questions
We appreciate your attention and valuable feedback

Protecting digital media authenticity through robust spectral watermarking

Questions & Discussion
We welcome your questions about SpecGuard implementation, 

applications, and future research directions
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