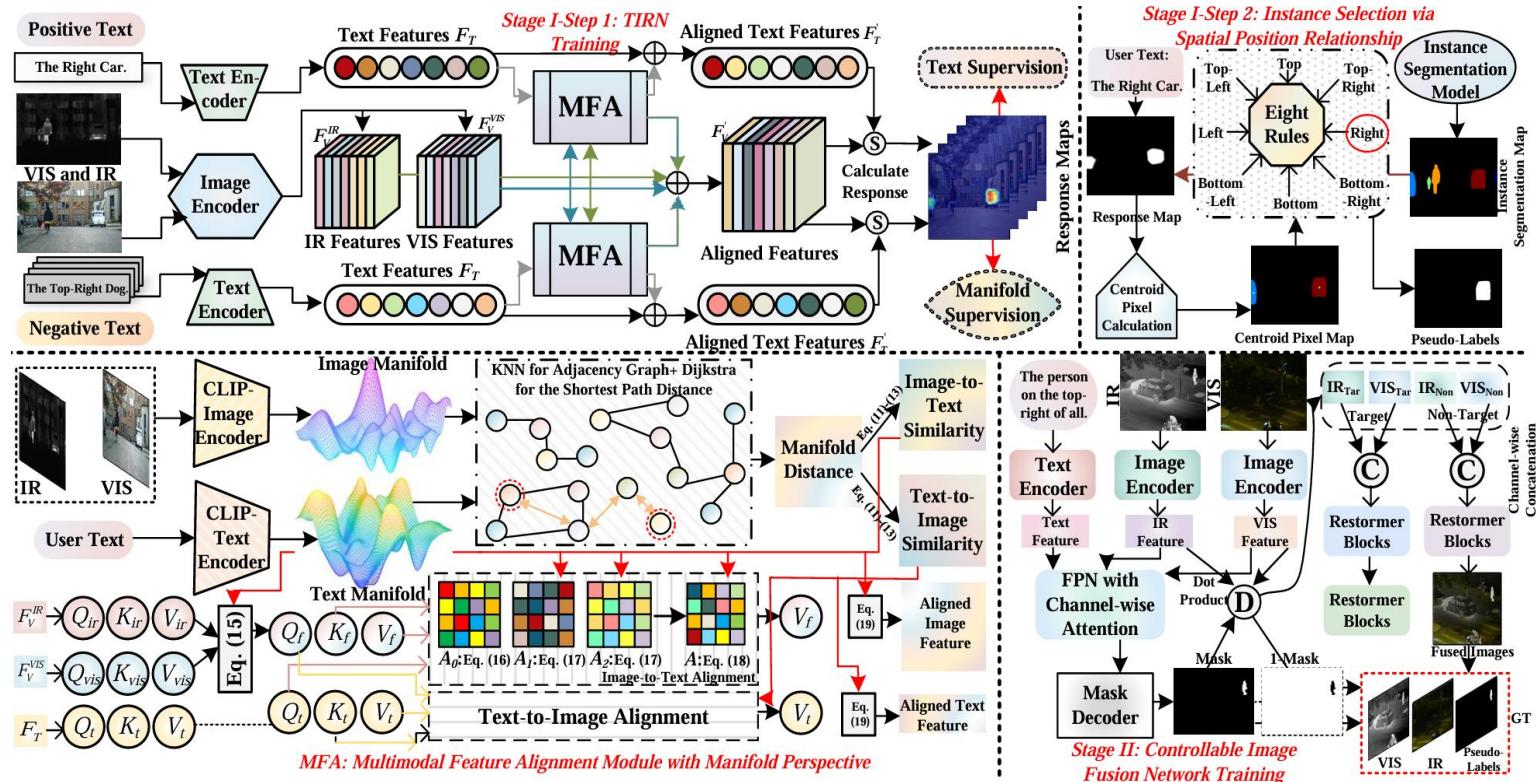
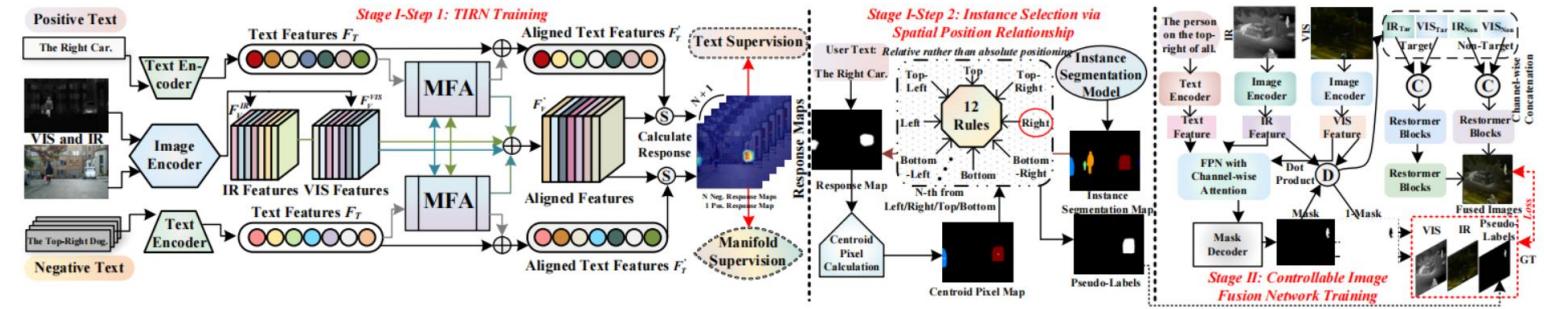


Highlight What You Want: Weakly-Supervised Instance-Level Controllable Infrared-VISIBLE Image Fusion

Zeyu Wang¹, Jizheng Zhang², Haiyu Song^{1*}, Mingyu Ge¹, Jiayu Wang¹, Haoran Duan^{3*}

¹Dalian Minzu University ²University of Macau ³Tsinghua University


Background & Motivation


- IR: robust in low light, lacks texture;
VIS: rich details, light-dependent.
Fusion aims to combine both.
- Limitation: Most methods are uncontrollable;
controllable ones are semantic-level only.
- Need: Emphasize a user-referred instance via natural language in real scenarios

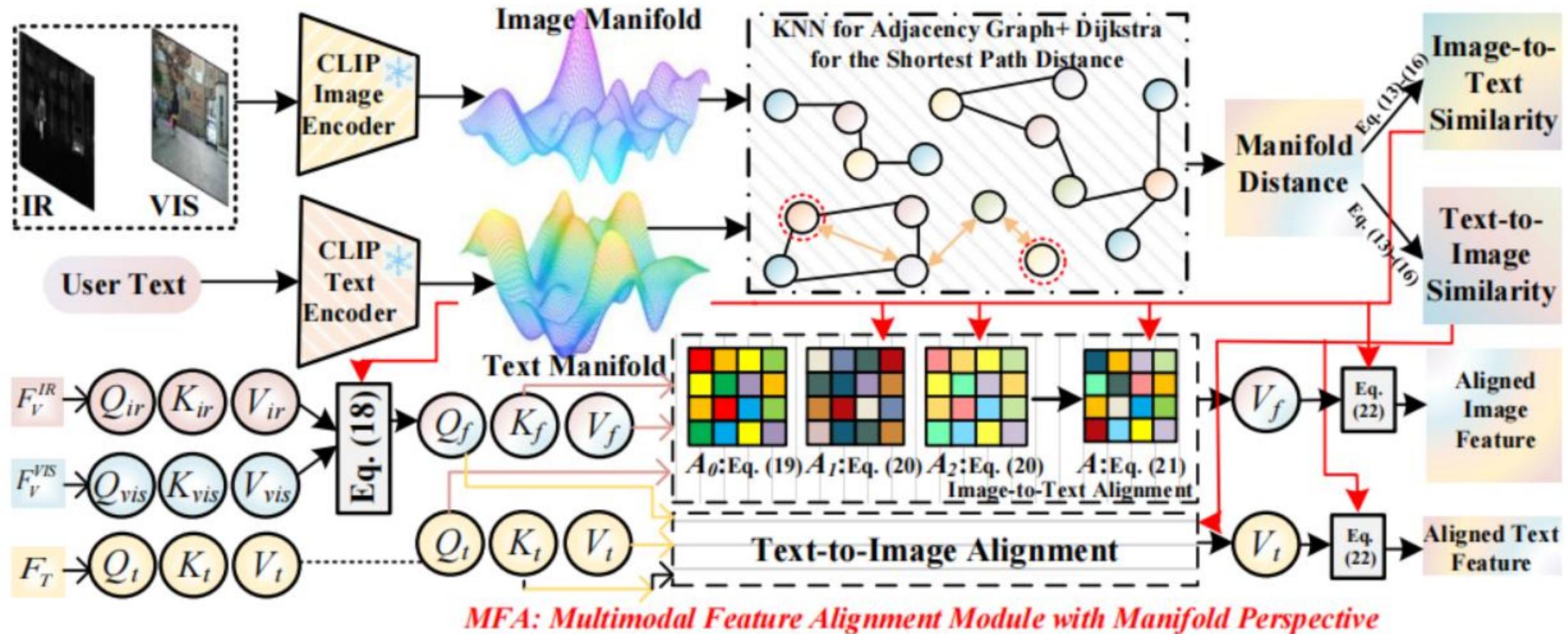
Contributions

- Instance-level controllable fusion from natural-language prompts.
- Two-stage weak supervision:
 - Stage I: Pseudo-labels via TIRN + MFA (text–image manifold similarity); ISM with 12 spatial rules.
 - Stage II: Fusion network with target vs. non-target region strategies.
- Leverage a text–image manifold prior for alignment.

Framework Overview

Stage I (Pseudo-labels):

Input IR, VIS, text \rightarrow TIRN response maps.

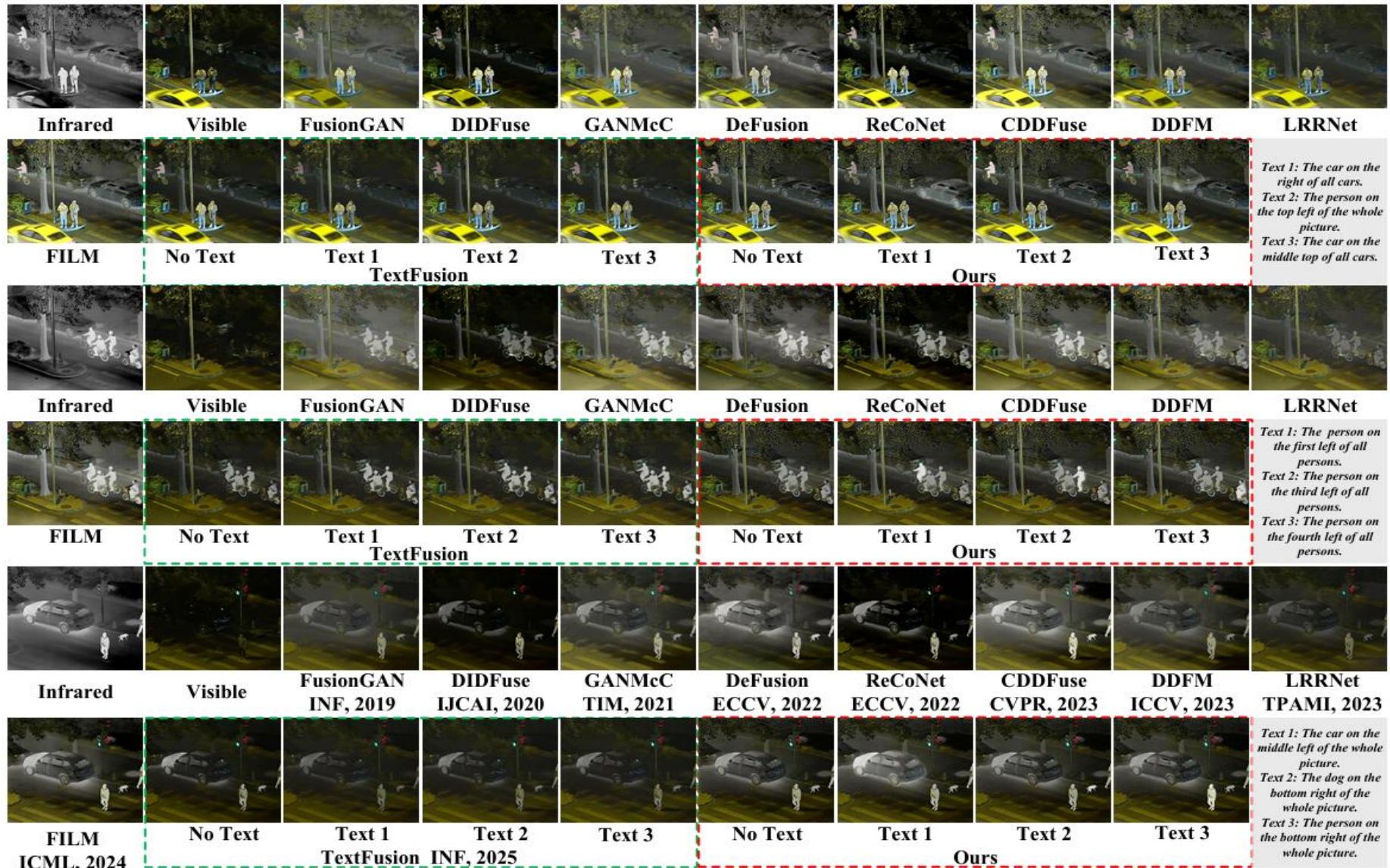

ISM picks the referred instance using relative rules (left/right/top-right/N-th...).

Stage II (Fusion):

Train with pseudo-labels; enhance target (IR luminance + VIS color/texture), preserve non-target quality.

Inference runs only the fusion network to localize & fuse conditioned on text.

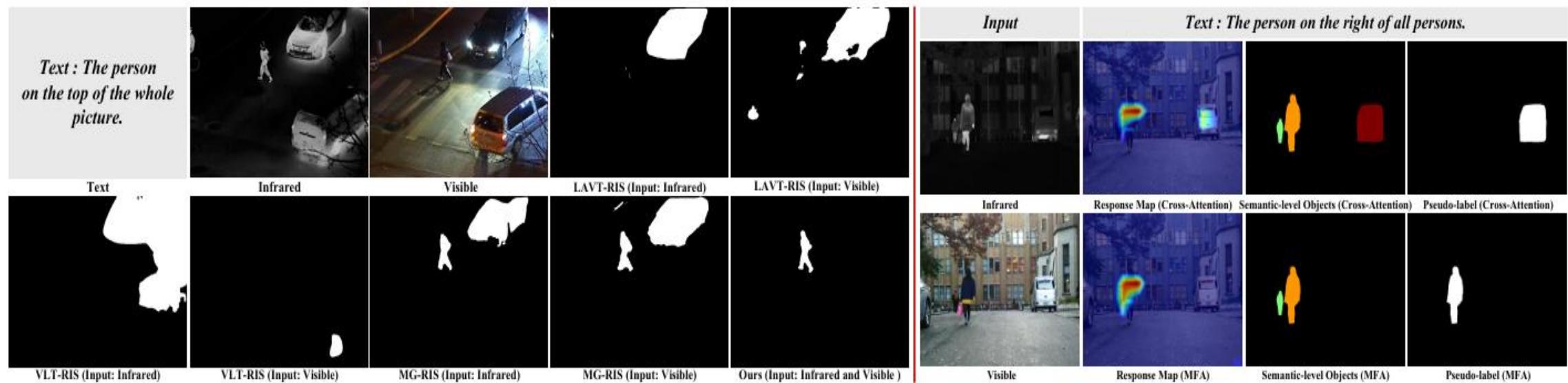
Manifold-Based Feature Alignment Module


Qualitative Results

Quantitative results. Each image pair is given a text description that randomly refers to an object in the image.

Test Sets	Methods	$Q_{CB}\uparrow$	$Q_Y\uparrow$	$Q_E\uparrow$	$Q_W\uparrow$	$SF\uparrow$	$AG\uparrow$	$VIF\uparrow$	$Q_{AB/F}\uparrow$	Test Sets	Methods	$Q_{CB}\uparrow$	$Q_Y\uparrow$	$Q_E\uparrow$	$Q_W\uparrow$	$SF\uparrow$	$AG\uparrow$	$VIF\uparrow$	$Q_{AB/F}\uparrow$
LLVIP	FusionGAN	0.251	0.487	0.306	0.289	5.970	1.609	0.498	0.212	M ³ FD	FusionGAN	0.330	0.552	0.376	0.333	8.012	2.688	0.388	0.264
	DIDFuse	0.424	0.338	0.432	0.389	10.313	2.098	0.444	0.267		DIDFuse	0.445	0.653	0.668	0.654	15.423	5.306	0.669	0.511
	GANMcC	0.326	0.572	0.368	0.413	6.286	1.874	0.654	0.292		GANMcC	0.392	0.615	0.409	0.431	7.590	2.695	0.527	0.289
	DeFusion	0.432	0.734	0.576	0.650	8.940	2.523	0.776	0.466		DeFusion	0.427	0.672	0.502	0.467	8.408	2.945	0.549	0.345
	ReCoNet	0.407	0.395	0.611	0.551	9.915	2.774	0.580	0.408		ReCoNet	0.455	0.740	0.706	0.670	11.955	4.479	0.604	0.508
	CDDFuse	0.459	0.857	0.767	0.762	13.278	3.432	0.958	0.641		CDDFuse	0.475	0.870	0.793	0.722	16.491	5.417	0.781	0.632
	DDFM	0.406	0.613	0.370	0.451	5.785	1.869	0.714	0.300		DDFM	0.405	0.656	0.555	0.532	9.725	3.379	0.606	0.449
	LRRNet	0.360	0.521	0.512	0.411	8.874	2.277	0.558	0.405		LRRNet	0.435	0.721	0.646	0.574	26.690	9.269	0.762	0.461
	FILM	0.485	0.759	0.825	0.791	14.361	3.926	0.976	0.675		FILM	0.493	0.839	0.816	0.748	16.757	5.545	0.806	0.653
	TextFusion	0.455	0.692	0.654	0.552	11.765	2.894	0.738	0.495		TextFusion	0.477	0.713	0.755	0.662	16.836	5.523	0.619	0.544
MSRS	Ours	0.511	0.784	0.843	0.803	14.572	4.005	0.996	0.711		Ours	0.517	0.905	0.833	0.754	16.627	5.609	0.838	0.694
	FusionGAN	0.322	0.391	0.206	0.206	4.354	1.446	0.442	0.140	TNO	FusionGAN	0.408	0.539	0.386	0.373	6.269	2.362	0.418	0.224
	DIDFuse	0.407	0.238	0.432	0.402	9.644	2.006	0.304	0.202		DIDFuse	0.463	0.655	0.602	0.614	11.768	4.249	0.593	0.403
	GANMcC	0.424	0.574	0.404	0.444	5.664	1.999	0.635	0.302		GANMcC	0.437	0.607	0.420	0.445	6.217	2.513	0.513	0.275
	DeFusion	0.514	0.749	0.730	0.753	8.146	2.644	0.730	0.507		DeFusion	0.482	0.707	0.592	0.568	6.598	2.675	0.553	0.359
	ReCoNet	0.378	0.347	0.720	0.692	9.975	2.990	0.490	0.404		ReCoNet	0.463	0.673	0.592	0.610	7.958	3.353	0.531	0.373
	CDDFuse	0.567	0.827	0.868	0.859	11.556	3.734	1.051	0.693		CDDFuse	0.450	0.787	0.697	0.659	11.621	4.330	0.730	0.496
	DDFM	0.482	0.662	0.582	0.579	7.388	2.513	0.743	0.474		DDFM	0.437	0.485	0.473	0.484	8.128	3.213	0.371	0.292
	LRRNet	0.393	0.507	0.659	0.632	8.473	2.641	0.541	0.454		LRRNet	0.483	0.701	0.513	0.513	9.438	3.627	0.538	0.367
	FILM	0.569	0.822	0.873	0.863	11.726	3.858	1.056	0.723		FILM	0.483	0.821	0.745	0.726	12.579	4.556	0.725	0.529
Ours	TextFusion	0.490	0.618	0.795	0.805	10.230	3.045	0.694	0.475		TextFusion	0.525	0.750	0.581	0.582	10.217	3.986	0.598	0.392
	Ours	0.570	0.875	0.887	0.876	11.788	3.877	0.997	0.698		Ours	0.520	0.829	0.746	0.733	12.935	4.791	0.704	0.566

Qualitative comparison


The first nine UIF models yield static results regardless of text. TextFusion and ours take one text and two source images as input. TextFusion highlights semantic-level objects, while our model targets the referenced instance.

Qualitative Results

Validation of the Necessity of Tailored Instance Localization Method for VIS-IR.

The left part shows a comparison of our localization method with recent RIS models on VIS and IR images. The right part illustrates the impact of our Manifold-Based Feature Alignment Module and cross-attention on pseudo-label accuracy

Downstream Task: Targeted Object Detection

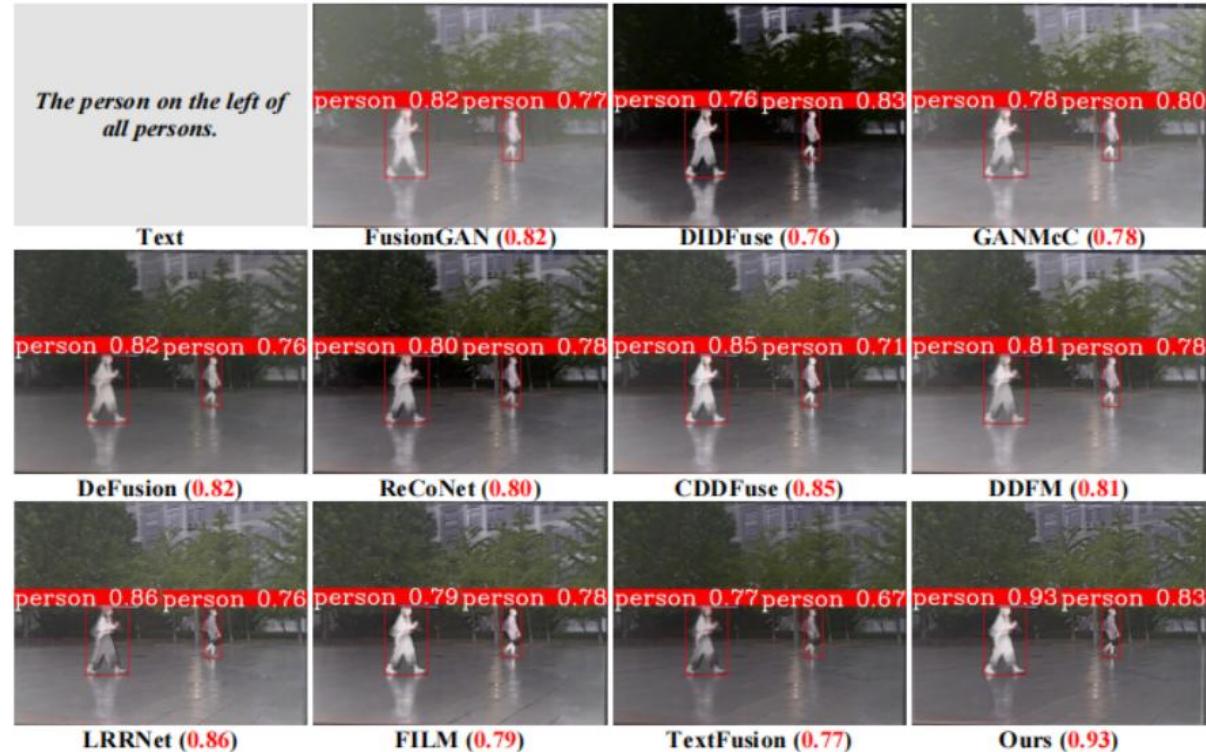


Table 3. Comparison results of fusion models on the TOD task.

Fusion Methods	Recall	mAP		
		@0.50	@0.75	@[0.5:0.95]
FusionGAN [31]	0.207	0.307	0.179	0.170
DIDFuse [55]	0.272	0.402	0.250	0.231
GANMcC [32]	0.267	0.393	0.235	0.222
DeFusion [23]	0.259	0.378	0.233	0.214
ReCoNet [11]	0.287	0.423	0.252	0.243
CDDFuse [56]	0.292	0.430	0.261	0.246
DDFM [57]	0.281	0.422	0.245	0.234
LRRNet [16]	0.304	0.447	0.260	0.252
FILM [59]	0.300	0.45	0.261	0.251
TextFusion [4]	0.288	0.423	0.253	0.243
Ours	0.314	0.472	0.268	0.263

Our model enhances TOD by highlighting referenced instances.

The confidence of the person instance described by the text in Yolo detection is higher than that of other algorithms

Thanks For Listening!