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Motivation

What We Found:
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* Signed Distance Function (SDF)-based methods like Voxurf capture global structures well but lack

fine details.

* 3D Gaussian Splatting (3DGS)-based approaches lack global geometry coherence. 3DGS-based
methods like GOF and 2DGS leverage a pre-computed sparse point cloud for image rendering.
e SDF-based methods outperform 3DGS in surface reconstruction, while 3DGS excels in image

rendering, as illustrated in figure above.
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Method
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Two key ideas:

SDF for Improved 3DGS:To
address the limitation of 3DGS
in learning global geometry, we
first fit the global structure using
an SDF-based representation.
We then initialize 3DGS by
sampling point clouds from the
mesh surface

3DGS for Enhanced SDF: To
compensate for the inability of
SDF-based methods, we
leverage the improved 3DGS
from the first step to render
additional novel view- point
images, expanding the dataset:
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Method

(A) Coarse mesh reconstruction: (B) SDF for 3DGS:
(A) Mesh Reconstruction
Tl il Normal Loss (B) SDF1ordDes Point clouds are sampled from the

|
LLL) =

mesh surface to initialize 3DGS.
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We adopt the coarse-stage surface reconstruction | Initialization the training views using their
from Voxurf. The loss function is ‘ known camera poses to

generate depth maps and
sample points from valid depth
regions.

L = Liecon + LTV (V(Sdf)) + Lsmooth (VV(Sdf))

We also introduce a normal consistency loss to \
i m prove trai ni ng sta bl Ilty Optimized 3D Gaussian Triplets

Looma = Y (IN(x) — N(x)]l1) [\



Method

(C) 3DGS for enhanced SDF:
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3DGS renders new viewpoint images to expand the
training set, refining the mesh.

{Tnew} = Splat(§, {mnew})

We explore two methods for generating new camera
poses.
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(a) Camera position perturbation (b) Camera poses interpolation

(D) Cyclic Optimization:

Steps B and C can be repeated for iterative optimization,
progressively improving performance.

Rendering Step: optimize a 3DGS model for rendering
novel view images.

9 = & (M)

Meshing Step: refine the current mesh by finetuning it
using both the newly rendered images and the original
input images.

M = 0 (Mgn), g(m)

We update the refined mesh.
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Experiments

Table 1. Surface reconstruction and novel view synthesis results on MobileBrick. The results are averaged over all 18 test scenes with an
initial input of 10 images per scene. PSNR-F is computed only on foreground regions. The best results are bolded.

| Mesh Reconstruction | Rendering |

| o = 2.5mm ‘ o =5mm | \ | | Time

| Accu.(%)1 | Recall(%)1 | F11 | Acou.(%)1 | Recall(%)t | F11 | P (mm) PSNRT PSNR-FT
Voxurf [43] | 62.89 | 6254 |6242| 8093 | 8061 [8038| 133 | 1434 | 1834 |55mins
MonoSDF [55] | 4156 | 3247 |[3622| 57.88 | 4819 |5221| 377 | 1471 | 1542 | 6hrs
2DGS [15] | 49.83 | 4532 |47.10| 7265 | 6488 |67.96| 148 | 17.12 | 18.52 |10 mins
GOF [57] | 5024 | 61.11 |[5496| 7499 | 8268 |78.16| 11.0 | 1652 | 18.36 |50 mins
3DGS [17] N N NN N NN | 1719 | 1912 |10 mins
SparseGS [44] | \ | NN N N ]\ | 1693 | 1874 |30 mins
Ours | 6836 | 69.79 |6897| 8679 | 8682 |[86.65| 9.7 | 1748 | 2045 | lhr
Ours (Twocycles)| 69.61 | 6889 [69.14| 87.79 | 8593 |86.74| 99 | 1758 | 2055 | 1.6hr




Experiments

Table 2. Surface reconstruction results on DTU with 5 input views. Values indicate Chamfer Distance in millimeters (mm). ”-” denotes
failure cases where COLMAP could not generate point clouds for 3DGS initialization. GSDF-10 is reported with 10 input images, as it
fails in sparser settings. The best results are bolded, while the second-best are underlined.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time
Voxurf [43] 2774 450 3.39 1.52 224 2.00 294 1.29 249 1.28 245 4.69 093 274 129 243 50 mins
MonoSDF [55] 1.30 3.45 145 0.61 1.43 1.17 1.07 142 149 0.79 3.06 2.60 0.60 2.21 2.87 1.70 6 hrs
SparseNeusS [22] 3.57 3.73 3.11 1.50 2.36 2.89 191 2.10 2.89 2.01 2.08 3.44 1.21 2.19 2.11 2.43 Pretrain+ 2 hrs ft
2DGS [15] 426 4.80 5.53 1.50 3.01 1.99 2.66 3.65 3.06 2.54 2.15 - 096 2.17 131 2.34 6 mins
GOF (TSDF) [57] 7.30 5.80 6.03 2.79 4.23 3.41 3.44 437 375 299 3.19 - 2.64 3.67 225 4.03 50 mins
GOF [57] 437 3.68 3.84 229 440 3.28 2.84 4.64 340 3.76 3.56 - 3.06 295 291 3.55 50 mins
GSDF-10 [54] 6.89 6.82 7.97 6.54 522 191 5.56 438 7.01 3.69 6.33 6.33 3.95 6.30 2.09 5.40 3 hrs

Ours 1.55 2.64 152 140 151 146 1.23 143 1.82 1.19 1.49 1.80 0.54 1.19 1.04 145 1 hr




Ablations

(1) Efficacy of 3DGS for Improving SDF

Table 3. Surface reconstruction results with varying numbers of
input views on MobileBrick (porsche) and DTU (scan69). The
Baseline represents a pure SDF-based reconstruction without the
assistance from 3DGS. ¢ indicates the improvement.

MobileBrick / F1 score DTU/CD
Input | Baseline Ours § |Baseline Ours §

5 3350 43.11 +9.61| 2940 1.230 -1.710
10 | 59.66 6237 +2.71| 1362 1.165 -0.197
20 | 63.18 63.88 +0.7 | 1.043 0.965 -0.078

(3) Different pose expansion strategies

Table 5. Ablation study on pose expansion strategies for in Mo-
bileBrick (aston) with 10 input images.

| F11 | Recall(%)? | CD (mm)]

Baseline |55.8] 499 | 87
Camera position perturbation | 59.9 57.4 6.6
Camera poses interpolation | 60.8 59.1 6.4

(2) Efficacy of SDF for enhancing 3DGS

Table 4. 3DGS rendering results with different initializations, av-
eraged across all 18 MobileBrick test scenes.

Method ‘ Foreground PSNR
3DGS (COLMAP) 19.13
3DGS w/ mesh clean 19.88
3DGS w/ normal and mesh clean 20.45

(4) Number of newly rendered views
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Visualization

Reference image (a) Voxurf (b) MonoSDF (c) 2DGS (d) GOF (e) Ours
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Figure 5. Qualitative mesh reconstruction comparisons on MobileBrick. See more visual results in supplementary material.




Visualization
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Figure 6. Qualitative novel view synthesis comparisons on MobileBrick.




Thanks for watching!
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