1!![&\51__[

oyl cnn
‘ Engineering

GRASP LABORATORY

ral Robotics, Autor g & Perception Lab

e

A Tthvw ™

EE BROWN
AP

How should one choose MAE hyperparameters?

From Linearity to Non-Linearity:

How Masked Autoencoders Capture Spatial Correlations

Anthony Bisulco™, Rahul Ramesh™, Randall Balestriero?, Pratik Chaudhari’
'University of Pennsylvania, “Brown University, Equal Contribution

How does masking shape representations in linear MAEs?
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How to train your MAE
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Masked Autoencoding Process

- Reconstruction .
Model

Jacobian [(4B);] determines the influence of input pixel i, towards reconstructing target pixel j. Magnitude averaged
over inputs. Results for Linear MAE models on CIFAR-10; similar behavior on ImageNet.

Key Insights:

e Spatial Integration: MAEs can integrate information from distant patches, whereas AEs and DAEs remain localized

 Patch Size Controls Spatial Extent of the Reconstruction Kernel: Larger patches lead to broader spatial receptive fields

« Masking Ratio Controls Strength of the Regularizer: Higher masking ratios lead to a stronger reliance

on long-range spatial dependencies
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Bigger Patches, Less Masking: Optimal MAE Performance Shifts
Toward Lower Masking Ratios with Increasing Patch Size

Reconstruction loss
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MAEs capture spatial

Local Spatial Correlations

- Natural images have a spatial structure: 1.0 J p— (" short Range i R T .
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control the spatial correlations the model can exploit
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Characterizing the features of nonlinear MAEs
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Takeaway: Statistical correlations in data provide regularities
that MAEs can exploit to reconstruct masked regions
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CIFAR-10 with 192 embedding dimensions pretrained for 2000 epochs with AdamW,
and fine-tuned for 100 epochs

Simplified Model: Linear MAE
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Encoder: A , Decoder: B, Mask: R, Reqgularizer:G" G = BlkDiag,(X " X)
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reconstruction

 Hyperparameters determine the scale of the learned features:
Masking ratio and patch size set how broadly MAEs integrate
spatial structure

Jacobian over different patch sizes Spatial Entropy

Training Evolution of Jacobian
Jacobian magnitude averaged over inputs. Results shown for nonlinear models on CIFAR-10; similar behavior is observed for ImageNet

regularizer

- Marginalize linear MAE loss over masks — reconstruction + regularization

(Bias of an MAE) terms — solve for closed form optimal solution Key Insights:

» Key Question: How do spatial correlation scales relate to useful

« During Training: Jacobians evolve from highly localized kernels to become spatially diffuse |
features for perception tasks?

- The MAE bias makes it select features that are redundantly present across

patches as opposed to an AE, which selects features that explain variance « Patch Size Controls the Spatial Extent of the Reconstruction Kernel: Larger patch sizes yield reconstruction

, , , - | , | - For example, tasks such as optical flow require large spatial scales
kernels with higher spatial entropy, shifting from local to global information aggregation

Takeaway: Linear MAEs acts as a data-dependent regularized autoencoder, to overcome the aperture problem

masking ratio sets the strength, patch size controls spatial structure - MAEs provide a potential mechanism for ViTs to learn local receptive fields



