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Image Forgery Detection & Localization Method

CNN-based Approaches RRUNQt (CVPRW?019)
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Image Forgery Detection & Localization Method

Transformer-based Approaches

TransForensic (ICCV2021) Tow )
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Image Forgery Detection & Localization Method

Frequency-based Approaches

FBINet (Access2022)
; e : EITLNet (ICASSP2024)
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FIGURE 1. The procedure of the proposed FBI-Net for forgery localization can be divided into three main parts. Firstly, we decompose an
input image as a low-/high-frequency image with DCT. Then, each image is passed into the shared encoder and applied to DFSAM. Lastly,
high dimensional feature maps are passed in the decoder, and we calculate the multi-task loss(region and edge loss).
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Image Forgery Detection & Localization Method

Key Challenges in IFL Task

> Existing detectors overfit to datasets and

v' Different forensic fingerprints and feature targets

= CM duplicate content within the same image, so camera noise, CFA/demosaicing, and JPEG statistics remain
consistent; detectors hunt for near-duplicate patches under small geometric changes.

» SP merges content from different images, where cues are cross-image inconsistencies (noise/PRNU level, white
balance, JPEG grids) and boundary resampling

v Editing pipelines and dataset bias — domain shift

» CM typically applies local affine transforms and mild blending while preserving the image’s overall style

= SPinvolves compositing, color matching/relighting, alpha matting, and often double compression
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Key Challenges in IFL Task

» Accuracy collapses under common corruptions leading to unstable localization.
Input Image Gaus5|an N0|se Gaussian Blur JPEG Compression
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Contribution

*  Propose a novel Transformer-based forgery localization framework, called M2SFormer, that efficiently
integrates M2S attention block with Edge-Aware DGA-based Transformer decoder

» M2S Attention Block - The integration of multi-spectral and multi-scale attention in the skip connection to
better capture forgery artifacts.

» Edge-Aware DGA-based Transformer Decoder - Difficulty-guided attention module after upsampling to
preserve fine details in challenging regions.

« Extensive experiments on multiple benchmark datasets demonstrate that M2SFormer outperforms
existing models, significantly improving generalization performance in forgery localization across unseen
domains and common corruption.
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Motivation: M2S Attention Block

* Problem: Subtle or complex manipulations are often missed when models rely only on spatial cues;
frequency signals expose such artifacts more reliably.

> Biological Insight: The HVS leverages multiple frequency bands; likewise, attending to selected DCT
components can surface delicate tampering traces while keeping spatial context.

> Scale variation: Forgery patterns appear at diverse sizes; scale-invariant cues (e.g., SIFT-style pyramids)
help capture anomalous boundaries across resolutions

v Fuse multi-spectral (DCT-based channel attention) and multi-scale (pyramidal spatial attention) in the skip
connections to inject richer, globally informed features into the decoder without heavy compute.
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M25SFormer

Motivation: Edge-Aware DGA-based Transformer Decoder

« Problem: Upsampling in encoder-decoder pipelines tends to lose fine details, precisely where tampered
edges/thin structures occur; the model needs guided emphasis during decoding,.

> Perceptual cue: Curvature reflects shape complexity and guides human visual attention; emphasizing
high-curvature, edge-rich regions should improve localization of subtle manipulations.
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v' Compute a global prior map, derive edge-aware

curvature, summarize difficulty and convert it into a text
embedding that gates channel attention at each
decoder stage (DGA).

0.9 0.9=-

0.8+ 0.8
0.7 = 0.7 =

0.6 0.6~

PROPORTION CORRECT
PROPORTION CORRECT

0.5+ 0.5

0 20 40 60 80 0 20 40 60 80

ANGLE (deg) ANGLE (deg)




PrO pOS@d \Y/ eth Od @ 7 Ig:hlggf;l%lm VISION LAB,,

MZ2SFormer

Overall Architecture
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M2S Attention ( Transformer Encoder )
STEP1. [Feature Pre-processing] Align features & Control computational complexity Iy 2l s Ify
c2p(1)]|[c2p(1)]||c2p(1)] (c2D(1)
) ) ) ) Down (2) Up (2) Up (4)
STEP2. [Multi-Spectral Attention] Highlight informative frequency bands slef xlef omlel o xle
m)meI m)l(mf; t)l(oofg E)wa;‘[
STEP3. [Multi-Scale Attention] Emphasize boundary cues across scales with (  Channel Concatonate )
low memory ==
:E)LOO fC
STEP4. [Feature Post-processing] Return refined skip connection features to the [ Mu,ﬁ_spzct‘;amﬂenﬁon ]
decoder =
:>I<oo fC
v' M2S unifies multi-spectral and multi-scale attention inside skip connections, [ Mli-Scal Afiention ]
delivering frequency-aware, edge-sharp features to the decoder for robust forgery =l ¢
localization. e
Channel Spilit
Up (2 | [ Down (2) | | Down (4)

¥ rf1 \ rfz \ rf3 Y rf4

[ DGA-based Transformer Decoder |
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M2S Attention

STEP2. [Multi-Spectral Attention] Highlight informative frequency bands

Multi-Spectral

Features
—.@— [spectrm |
. :é—-b Spectrum 2
Eé— e
»  Project f. onto top-K 2D DCT basis images to obtain spectral components {fX}
Hi—1 We—1
k _ Uk, Vk
=D ) (E)nwDiss
h=0 w=0

> DRk = cos(:—h (ug + %))sin(nw—w (vk + %)) with top-K selection strategy for frequency indices (uy, vi)
g S S
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M2S Attention

STEP2. [Multi-Spectral Attention] Highlight informative frequency bands
Multi-Spectral
Features

N N

—.%)— [Spectrum 1|
f.

. —-P&—-b Spectrum 2 =

&3

—’é— {spectrum 1

+  For each fX, apply GAP/GMP to extract pooled statistics and aggregate them
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M2S Attention

STEP2. [Multi-Spectral Attention] Highlight informative frequency bands

Multi-Spectral
Features

N N — —
[ specirum 1 | ==
f aldla
Q
C olx(d
N\
Jinput Featare) >/ Spectrumz
— —
: il =]
o ' 3
o, Qlo|o
{Spectum & S|%[8
pectrum K Q Q

+  For each aggregated statistic, sum over k to obtain a channel attention map MsPectral by conv-RelU-conv
Block and Sigmoid operation

Mmspectral — z 2 C2D1x1 (6(C2D; 51 (f5)))
de{avgmax} k=1
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M2S Attention

STEP2. [Multi-Spectral Attention] Highlight informative frequency bands

Multi-Spectral

Features
N N — —
== SAE _
Olo|A
f, 335 f,
lilnput Featur : > = Spectrum2 = QtPutieature
: S ENS
B (] E', (]
Lstemn 8|)3
o o

* Recalibrate channels of f, using multi-spectral channel attention map Mspectral
f. =f. X% Mspectral
C C

v" Subtle manipulations often manifest in specific frequencies; channel-wise weighting surfaces these cues
while keeping spatial context.

> Channel recalibrated features are forwarded to Multi-Scale Attention [STEP3]
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M2S Attention

STEP3. [Multi-Scale Attention] Emphasize boundary cues across scales with low memory

Multi-Scale
Features

C2D (3)
RelLU
c2D (1)

Py Level1l efmp

.Inpul Feature

ReLU
c2D (1)
3

Down (2)
C2D (3,5)

4 LevelL

Down (2!°1)
TZD (3,20 +
1)
RelLU
C2D (1)
é

« Build a feature pyramid by downsampling f; to L levels by inspired SIFT feature extractor

* Ateachlevell, use 3 x 3 dilated convolution with dilation 21 + 1 then 1 X 1 convolution to preserve spatial
information

ﬂ, = CZD1><1(DCZD§1><+31 (Down, (fc)))
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M2S Attention

STEP3. [Multi-Scale Attention] Emphasize boundary cues across scales with low memory

Muliti-Scale
Features

c2D (3)
RelLU
c2D (1)

-
]!
a
g
F
Down (2)
€2D (3,5)
RelLU
C2D (1)
- él
‘[ ©2D (1) ]H[ c2D (1) ]H[ c2D (1) ]\

>4 Levelt

Down gZ"‘l! |
2L+
1)
RelU
c2D(1)
r
Iy
E

«  Compute a foreground map F; and background map B; = 1 — F; and blend them via learnable parameters a! and f!

f1 = C2D3x3(al(fe x F) + BI(f. X B))
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M2S Attention

STEP3. [Multi-Scale Attention] Emphasize boundary cues across scales with low memory

Multi-Scale
Features 1 1)
| =
gla|z < |3
o o -+ Lovel1
Bl&|8 8 §|@
-
i f
—
¢ glz|5[s = E|als <
[ parl g i = g ] By YA an-i
{Input Feature gﬁ & 3 N Level2 -e ﬁ é a1 i
alo 3] o & >
. -
—_ = . ~—
ol B — = =
HMEIEZ = Sl
SH3l2la 4 Leveir » o a3 |2
S El <] Q= |
§g (3] o o|F|s
alo
-

* Upsample and sum all refined scales

v' Forged boundaries appear at diverse sizes; scale-aware spatial attention sharpens edges while keeping memory in
check.
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Edge-Aware DGA-based Transformer Decoder
M2S Attention Block

]Algorithm 1 Edge-Aware Difficulty Calculator

,_l_f:i_ 1 o fl +1 Input: Global prior map G
e W e P T Output: Difficulty level
§3 § i 2 g i: G, G, < Sobel(G)
5'8 i . B < & ) ! 2 Guwy Goy SObel((GI))
2 g i Dl—l S CH < Xl E % i 3: Gyz, Gy < Sobel(G,,
—ﬂ S | (626 — 26,6, + GG /(62461
&F| | ¢ 2 S D O 5: E<+ /G + G
| Sl 2 e SeaX(keE)/TE)
| HE X 88| 7. if S > 0.5 then
i - e —~1— nix . i 5 § 8 return "hard”
- ! 73%.5 g o g% §_® - ,é 5 ,83 9: else
£5 1Ll §§§° %E L ) M7 )y F—-.E 10:  return “easy”
BE| ¥ W l o ’fﬁ 11: end if
3 u i_ i-th DGA-based Transformer Decoder ! ST

..[
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Edge-Aware DGA-based Transformer Decoder

Why Difficulty Helpful?

- Difficulty reveals where
into guidance for better localization

Input Image

o 0

I .l ‘l

o],

)
r
1

P

Global Prior Map

asy Sample Hard Sample
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Quantitative Results

CASIAVZ Training Scheme Results

Seen Domain Unseen Domain
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DIS25k Training Scheme Results
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Seen Domain Unseen Domain
Method DIS25k [61] CASTAvZ [53] CASTAvI [14] Columbia [26] IMD2020 [57] CoMoFoD [6Z] | Inthe Wild [29] MISD [30]

DSC mlol’ DSC mlol’ DSC mlolJ DSC mlolJ DSC mloU DSC mlolU DSC mlol DSC mlolJ
UNet [58] 809032 74.204n || 15.1 64y 97 e (2404 15.7w0»|28.6 .n 185w |23.1 0 15.00n|(134w07 7.9w05 [33.9 s 22405 (40.1 013 27.00.1n
SegNet [5] 41.7@we 32504 (| 6.0 4l1n | 5605 3505 | 2505 1303 | 83wme 5204 | 990n 660s5 | 520490 31on (13500 8.206
MantraNet [67] |69.6 a2 59.1 s || 127 @n 7.6¢G0 (18104 11.0w03|265 Gy 163 2n|18.60e 11304119 0s 6.8 @03 [26.2.3) 16.0w09|31.9 1 20.1 09
RRUNet [7] 76.8 013 689 ms|| 13.4we 936Gn (21409 15007299 200 207 6| 17.8 07 12.005] 942y 5805 (23.7 0. 16009 |32.2 08 21.1 0.2
MT-SENet [77] [77.8 azn 70434 || 128G 82@n (22007 14205 (268 e 17.2 00| 1.90n 12402131 0m 7.7 06 |26.5 09 16.9we|34.2 0.2y 22.3 (035
TransForensic [23]| 834 @o 76.206 [|21.2 0Ly 16407 (304 07 239 05|33.007 23403 |27.00e 19.8 @5 |18.1 22 12.108(|31.0 s 22.3 07)|45.7 (.4 33.201.2
MVSSNet [13] | 70.0¢43 60.1 @2 |[19.8 a0z 14431 30,003 22.6 (.0 |35.7 47 264 38| 247 .3 1740917505 11.3 000|307 29 22.0c2n|47.7 2y 34.8 (1.8
FBINet [ 18] 8l.oise 747 58 || 179003 13.8@8 |21.00n 159@e|13.90n 8.7 03 (21,605 1540515007 9903 (17905 1230032407 21404
SegNeXt [20] 7290 63.7man || 13467 84 @m |[23.7 w03y 15302 (35.50.n 241 o8| 21.5 0 13.80n|13.6 0m B.1@e |32.205 21.2 04 (41.5 09 28.1 08
CFLNet [51] 79.8w7n 71503 (2020010 15.0@3 [29.006 22.2 035|300 3o 209 26|26.1 04 18504 (17.90y 11.6@0%|29.8 .y 20.9 s |46.0 (1.5) 33.4 (1.3
EITLNet [19] | 90.6 39y 857 @y |[25403mn 213 030|362 03 311 wo»n|3l.62e 2400223000y 23.802 (199 28 14221|29.2 08 23.1 06 |39.00 27.207
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Quantitative Results

Corruption Robustness
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Qualitative Results
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Efficiency Analysis
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Ablation Study

Setting [ Spectrum [ Scale Seen Unseen r _ Setting Seen Unseen ]
Name S M TS MIDSC mloUTDSC mloU Param (M) | FLOPs (G) Name 0SC mloU T DSC mlcD Param (M) | FLOPs (G)
50 v v 56.3 491 |127.1 242 | 26.2MB 13.8GB No DGA 555 405 | 32.3 6.1 76.0MB 13.0GE
S /|20 4861336 281 27.4MB 1 14.2GB Simple DC+DGA | 56.1 50.2 | 30.8 248 | 274MB | 14.0GB
52 v o 55.9 490|361 31.3 | 26.2MB 13.8GB EADC T DGA TR 508 3.0 33 37 AMB T27GE
S3 (Ours) v v | 58.8 50.8 |43.0 343 | 27.4MB 14.2GB — — - -

Table 3. Ablation study of M2S attention block in skip connection 1able 4. Ablation study of DGA-based Transformer on Seen
on Seen (CASIAv2 [53]) and Unseen datasets (Other test datasets). (CASIAv2 [53]) and Unseen datasets (Other test datasets). ECDC
“S” and “"M” denote Single and Multi, respectively. denotes Edge-Centric Difficulty Calculator.
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«  Unified attention for robust localization.

v' Fuse multi-spectral channel attention with multi-scale spatial attention in the skip connections.
v' Pair this with an Edge-Aware DGA-based Transformer decoder.

« Difficulty-guided decoding.

v' A curvature-based global prior map estimates sample difficulty ("easy”/"hard”) and converts it into a text
embedding that gates channel attention during decoding

 Cross-domain generalization & Efficiency.

v Across two training schemes (CASIAv2, DIS25k) and six external test sets, M2SFormer attains
state-of-the-art pixel-level localization with stronger generalization to unseen domains.

v" The method balances accuracy and compute—~27.4 M params and ~14.2 GFLOPs—while outperforming
heavier baselines.
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