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- Motivation

o Zero-shot Skeleton-based Action Recognition (ZSAR)

The fully supervised skeleton-based action recognition methods perform well

Annotating every possible action is impractical

Action labels
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Throw soccer ball
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- Motivation

o Zero-shot Skeleton-based Action Recognition (ZSAR)
= The fully supervised skeleton-based action recognition methods perform well
= Annotating every possible action is impractical

= Retraining models for new classes incurs a significant cost
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- Motivation

o Zero-shot Skeleton-based Action Recognition (ZSAR)
= Enabling predictions for unseen actions without requiring explicit training data

= Why ZSAR is possible?
%, Human actions often share common skeletal movement patterns across related
actions
§> ZSAR methods align pre-learned skeleton features with text-based action descriptions,
allowing the models to extrapolate from seen actions to unseen ones



- Motivation

o Zero-shot Skeleton-based Action Recognition (ZSAR)
Significant challenges: “the modality gap”

How?
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- Motivation

0 Previous ZSAR methods: VAE-based
= Reconstructs skeleton-text feature pairs via cross-reconstruction

= Recovers skeleton features from text and vice versa
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- Motivation

o Previous ZSAR methods: Contrastive learning(CL)-based

Aligns skeleton and text features by minimizing feature distance through
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- Motivation

o Previous ZSAR methods: VAE-based, CL-based
= Modality gap due to direct alignment
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- Motivation

0 Proposed method: Triplet Diffusion for Skeleton-Text Matching (TDSM)

= Diffusion models effectively incorporate conditioning signals enabling strong
cross-modal alignment
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Rather than the generative ability, we are motivated by the alignment property



- Motivation

0 Proposed method: Triplet Diffusion for Skeleton-Text Matching (TDSM)
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@7 Proposed Method

o We present a diffusion-based action recognition with zero-shot learning for
skeleton inputs, TDSM which is the first framework to apply diffusion models

= Reverse diffusion process with text prompts
§{> Implicitly alignthe skeleton features with text prompts (action labels)

= Triplet diffusion (TD) loss

§{> Enhance the model’s discriminative powerby ensuring accurate denoising for correct
skeleton-text pairs while suppressing it for incorrect pairs



@7 Proposed Method

0 Training framework of our TDSM: embedding inputs

= Performs the diffusion process in a compact latent space
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@7 Proposed Method

0 Training framework of our TDSM: embedding inputs

= Performs the diffusion process in a compact latent space
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@7 Proposed Method

0 Training framework of our TDSM: embedding inputs

= Embeds skeleton and prompt input
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@7 Proposed Method

0 Training framework of our TDSM: embedding inputs

= Embeds skeleton and prompt input
Globaltext feature, Localtext feature (for GT label)
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@7 Proposed Method

o Training framework of our TDSM: diffusion process (forward process)

= Random Gaussian noise is added to the skeleton feature at a random timestep
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@7 Proposed Method

0 Training framework of our TDSM: diffusion process (reverse process)

Network predicts noise from noisy skeleton feature conditioned on text features
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@7 Proposed Method

o Training framework of our TDSM: loss function (diffusion loss)

= Diffusion loss ensures accurate denoising for positive skeleton-text(GT) pair
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@7 Proposed Method

o Training framework of our TDSM: loss function (triplet diffusion (TD) loss)

TD loss enhances the ability to differentiate between GT/wrong label predictions
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@7 Proposed Method

o Inference phase of our TDSM

= Enhance discriminative fusion through the TD loss

o Denoise GT skeleton-text pairs effectively while preventing the fusion of incorrect

pairs within the seen dataset

% Selective denoising process promotes a robust fusion of skeleton and text features

o Allow the model to develop a discriminative feature space that can generalize to

unseen action labels



@7 Proposed Method

o Inference phase of our TDSM

= One-step inferenceat a fixed timestep (tiest) and fixed noise (€est)
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Experiment Results

o Quantitative Results (Top-1 Acc 1)

SynSE (standard) and PURLS (extreme) benchmarks

X/Y split
X: the # of seen classes
Y: the # of unseen classes

SysSE  NTU-60 (Acc, %) PURLS

SysSE NTU-120 (Acc, %) PURLS

Methods Publications - - - - - - - -
55/5 split | 48/12split | 40/20 split | 30/30 split 110/10 split | 96/24 split | 80/40 split | 60/60 split
ReViSE [26] ICCV 2017 5391 17.49 24.26 14.81 55.04 32.38 19.47 8.27
JPoSE [67] ICCV 2019 64.82 28.75 20.05 12.39 51.93 32.44 13.71 7.65
CADA-VAE [54] CVPR 2019 76.84 28.96 16.21 11.51 59.53 35.77 10.55 5.67
SynSE [20] ICIP 2021 75.81 33.30 19.85 12.00 62.69 38.70 13.64 7.73
SMIE [77] ACM MM 2023 77.98 40.18 - - 65.74 45.30 - -
PURLS [79] CVPR 2024 79.23 40.99 31.05 23.52 71.95 52.01 28.38 19.63
SA-DVAE [38] ECCV 2024 82.37 41.38 - - 68.77 46.12 - -
STAR [8] ACM MM 2024 81.40 45.10 - - 63.30 44.30 - -
TDSM (Ours) - 86.49 56.03 36.09 25.88 74.15 65.06 36.95 27.21




Experiment Results

o Quantitative Results (Top-1 Acc 1)

SMIE (generalization) benchmark: three distinct split

X/Y split
X: the # of seen classes
Y: the # of unseen classes

NTU-60 (Acc, %)

NTU-120 (Acc, %)

PKU-MMD (Acc, %)

Average of the three splits

Methods : ) .
55/5 split 110/10 split 46/5 split
ReViSE [26] 60.94 44.90 59.34
JPoSE [67] 59.44 46.69 57.17
CADA-VAE [54] 61.84 45.15 60.74
SynSE [20] 64.19 47.28 53.85
SMIE [77] 65.08 46.40 60.83
SA-DVAE [38] 84.20 50.67 66.54
STAR [8] 77.50 - 70.60
TDSM (Ours) 88.88 69.47 70.76




=| Experiment Results

Q

: the variation across
10 different random noise

NTU-120 96/24 Split

Ablation Study: Effect of varying inference timesteps test
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Inference timestep: tiest = T /2

o Ablation Study: Loss function & Text feature types (empirically determined)
Lot Lo NTU-60 (Acc, %) NTU-120 (Acc, %) Global Local NTU-60 (Acc, %) NTU-120 (Acc, %)
55/5 split | 48/12split | 110/10 split | 96/24 split Zg z 55/5 split | 48/12split | 110/10split | 96/24 split
v 79.87 53.03 72.44 57.65 v 83.41 51.50 70.14 61.90
v 80.90 54.36 70.73 60.95 v 83.33 52.63 69.95 62.10
v v 86.49 56.03 74.15 65.06 v v 86.49 56.03 74.15 65.06




Experiment Results

o Ablation Study: Impact of total timesteps T’

Inference timestep: tiest = T /2
(empirically determined)

Total T NTU-60 (Acc, %) NTU-120 (Acc, %)
55/5 split | 48/12split | 110710 split | 96/24 split
1 85.03 44.10 69.91 60.35
10 84.51 50.89 69.97 62.04
50 86.49 56.03 74.15 65.06
100 83.48 56.27 71.05 64.57
500 81.34 53.43 71.93 60.81
o Ablation Study: Effect of noise € during training
Gaussian NTU-60 (Acc, %) NTU-120 (Acc, %)
noise € 55/5 split 48/12 split 110/10 split 96/24 split
Fixed 76.40 4425 64.01 52.21
Random 86.49 56.03 74.15 65.06

Regularization mechanism prevents overfitting
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for Zero-shot Skeleton-based Action Recognition
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