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Motivation

 Zero-shot Skeleton-based Action Recognition (ZSAR)
 The fully supervised skeleton-based action recognition methods perform well

 Annotating every possible action is impractical

Action labels

Throw baseball
Throw basketball
Throw volleyball
Throw soccer ball
Throw ⋯
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Motivation

 Zero-shot Skeleton-based Action Recognition (ZSAR)
 The fully supervised skeleton-based action recognition methods perform well

 Annotating every possible action is impractical

 Retraining models for new classes incurs a significant cost

Action labels
Throw baseball
Throw basketball

Action labels
Throw baseball
Throw basketball
Throw volleyball

Action labels
Throw baseball
Throw basketball
Throw volleyball
Throw soccer ball

Retrain Retrain
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Motivation

 Zero-shot Skeleton-based Action Recognition (ZSAR)
 Enabling predictions for unseen actions without requiring explicit training data

 Why ZSAR is possible?
o Human actions often share common skeletal movement patterns across related 

actions

o ZSAR methods align pre-learned skeleton features with text-based action descriptions, 
allowing the models to extrapolate from seen actions to unseen ones
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Motivation

 Zero-shot Skeleton-based Action Recognition (ZSAR)
 Significant challenges: “the modality gap”

How?

Temporal and spatial
motion patterns

High-level
semantic information
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Motivation

 Previous ZSAR methods: VAE-based
 Reconstructs skeleton-text feature pairs via cross-reconstruction

 Recovers skeleton features from text and vice versa

Self-reconstruction Cross-reconstruction

Direct 
alignment
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Motivation

 Previous ZSAR methods: Contrastive learning(CL)-based
 Aligns skeleton and text features by minimizing feature distance through 

contrastive learning

Anchor

Positive 
sample

Negative 
sample

Skeleton-Text “Pull”

“Push”

Direct 
alignment
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Motivation

 Previous ZSAR methods: VAE-based, CL-based
 Modality gap due to direct alignment
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Motivation

 Proposed method: Triplet Diffusion for Skeleton-Text Matching (TDSM)
 Diffusion models effectively incorporate conditioning signals enabling strong 

cross-modal alignment

e.g., text-to-image generation (Stable Diffusion v3.0)

Rather than the generative ability, we are motivated by the alignment property
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Motivation

 Proposed method: Triplet Diffusion for Skeleton-Text Matching (TDSM)
 Utilizes the cross-modality alignment power of diffusion models
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Proposed Method

 We present a diffusion-based action recognition with zero-shot learning for 
skeleton inputs, TDSM which is the first framework to apply diffusion models

 Reverse diffusion process with text prompts
o Implicitly align the skeleton features with text prompts (action labels)

 Triplet diffusion (TD) loss
o Enhance the model’s discriminative power by ensuring accurate denoising for correct 

skeleton-text pairs while suppressing it for incorrect pairs
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Proposed Method

 Training framework of our TDSM: embedding inputs
 Performs the diffusion process in a compact latent space

Pretrains skeleton encoder w/ seen classes
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Proposed Method

 Training framework of our TDSM: embedding inputs
 Performs the diffusion process in a compact latent space

Pretrained text encoder (e.g., CLIP)
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Proposed Method

 Training framework of our TDSM: embedding inputs
 Embeds skeleton and prompt input

Skeleton feature
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Proposed Method

 Training framework of our TDSM: embedding inputs
 Embeds skeleton and prompt input

Global text feature, Local text feature (for GT label) 

Global text feature, Local text feature (for wrong label) 
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Proposed Method

 Training framework of our TDSM: diffusion process (forward process)
 Random Gaussian noise is added to the skeleton feature at a random timestep

𝐳𝐳𝑥𝑥,𝑡𝑡 = �𝛼𝛼𝑡𝑡𝐳𝐳𝑥𝑥 + 1 − �𝛼𝛼𝑡𝑡𝛜𝛜
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Proposed Method

 Training framework of our TDSM: diffusion process (reverse process)
 Network predicts noise from noisy skeleton feature conditioned on text features

�𝛜𝛜𝑝𝑝 = 𝒯𝒯diff(𝐳𝐳𝑥𝑥,𝑡𝑡 , 𝑡𝑡; 𝐳𝐳𝑔𝑔,𝑝𝑝, 𝐳𝐳𝑙𝑙,𝑝𝑝)
(for GT label)

�𝛜𝛜𝑛𝑛 = 𝒯𝒯diff(𝐳𝐳𝑥𝑥,𝑡𝑡 , 𝑡𝑡; 𝐳𝐳𝑔𝑔,𝑛𝑛, 𝐳𝐳𝑙𝑙,𝑛𝑛) (for wrong label)
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Proposed Method

 Training framework of our TDSM: loss function (diffusion loss)
 Diffusion loss ensures accurate denoising for positive skeleton-text(GT) pair

ℒdiff = 𝛜𝛜 − �𝛜𝛜𝑝𝑝 2
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Proposed Method

 Training framework of our TDSM: loss function (triplet diffusion (TD) loss)
 TD loss enhances the ability to differentiate between GT/wrong label predictions

ℒTD = max 𝛜𝛜 − �𝛜𝛜𝑝𝑝 2
− 𝛜𝛜 − �𝛜𝛜𝑛𝑛 2 + 𝜏𝜏, 0
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Proposed Method

 Inference phase of our TDSM

 Enhance discriminative fusion through the TD loss
o Denoise GT skeleton-text pairs effectively while preventing the fusion of incorrect 

pairs within the seen dataset

 Selective denoising process promotes a robust fusion of skeleton and text features
o Allow the model to develop a discriminative feature space that can generalize to 

unseen action labels
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Proposed Method

 Inference phase of our TDSM
 One-step inference at a fixed timestep (𝑡𝑡test) and fixed noise (𝛜𝛜test)

The predicted label is the one 
that minimizes 𝛜𝛜test − �𝛜𝛜𝑘𝑘 2

�𝛜𝛜𝑘𝑘 = 𝒯𝒯diff 𝐳𝐳𝑥𝑥,𝑡𝑡
𝑢𝑢 , 𝑡𝑡test; 𝐳𝐳𝑔𝑔,𝑘𝑘

𝑢𝑢 , 𝐳𝐳𝑙𝑙,𝑘𝑘𝑢𝑢

(for un-seen label 𝑘𝑘)
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Experiment Results

 Quantitative Results (Top-1 Acc ↑)
 SynSE (standard) and PURLS (extreme) benchmarks X/Y split

X: the # of seen classes
Y: the # of unseen classes

SysSE PURLS SysSE PURLS
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Experiment Results

 Quantitative Results (Top-1 Acc ↑)
 SMIE (generalization) benchmark: three distinct split X/Y split

X: the # of seen classes
Y: the # of unseen classes

Average of the three splits
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Experiment Results

 Ablation Study: Effect of varying inference timesteps 𝑡𝑡test

 Ablation Study: Loss function & Text feature types

Orange area
: the variation across
10 different random noise

Inference timestep: 𝑡𝑡test = 𝑇𝑇/2
(empirically determined) 
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Experiment Results

 Ablation Study: Impact of total timesteps 𝑇𝑇

 Ablation Study: Effect of noise 𝛜𝛜 during training

Inference timestep: 𝑡𝑡test = 𝑇𝑇/2
(empirically determined)  

Regularization mechanism prevents overfitting
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