

Bridging the **Skeleton-Text** Modality Gap

Diffusion-Powered Modality Alignment
for Zero-shot Skeleton-based Action Recognition

Jeonghyeok Do

Munchurl Kim[†]

Motivation

- Zero-shot Skeleton-based Action Recognition (ZSAR)

- The fully supervised skeleton-based action recognition methods perform well
- Annotating every possible action is **impractical**

Action labels

Throw baseball

Throw basketball

Throw volleyball

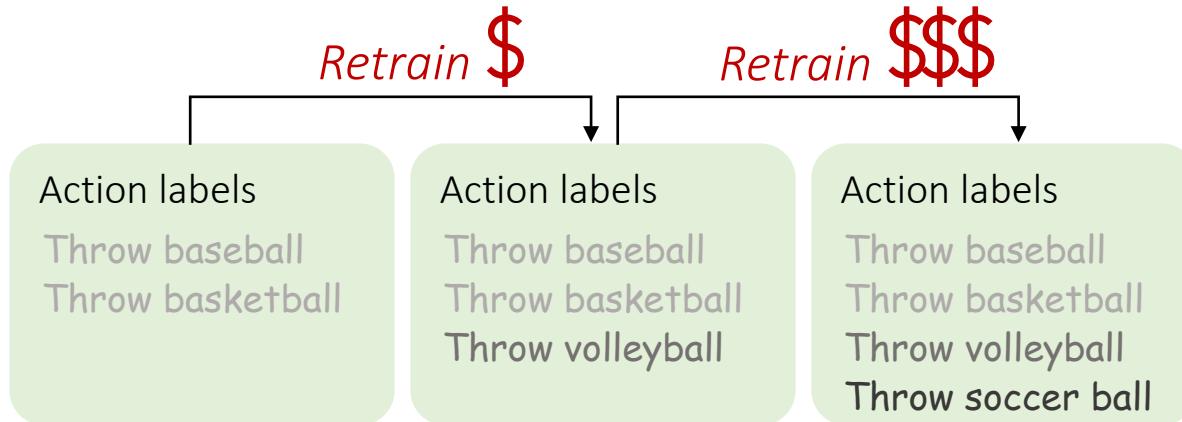
Throw soccer ball

Throw ...

Motivation

❑ Zero-shot Skeleton-based Action Recognition (ZSAR)

- The fully supervised skeleton-based action recognition methods perform well
- Annotating every possible action is **impractical**
- Retraining models for new classes incurs a **significant cost**

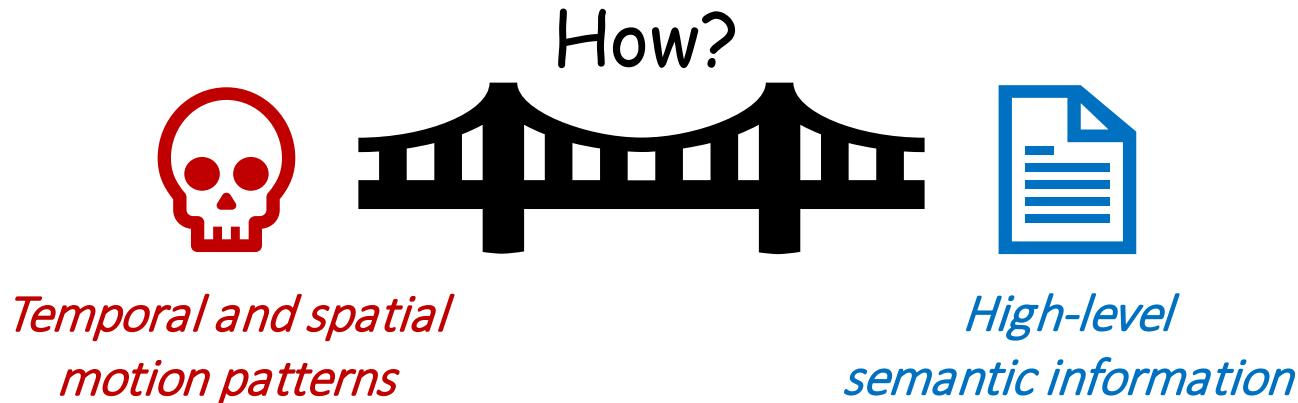


Motivation

- ❑ Zero-shot Skeleton-based Action Recognition (ZSAR)
 - Enabling predictions for unseen actions **without requiring explicit training data**
 - Why ZSAR is possible?
 - 👉 Human actions often *share common skeletal movement patterns* across related actions
 - 👉 ZSAR methods *align pre-learned skeleton features with text-based action descriptions*, allowing the models to extrapolate from seen actions to unseen ones

Motivation

- Zero-shot Skeleton-based Action Recognition (ZSAR)
 - Significant challenges: *“the modality gap”*

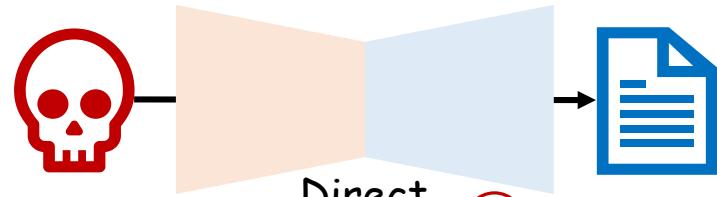
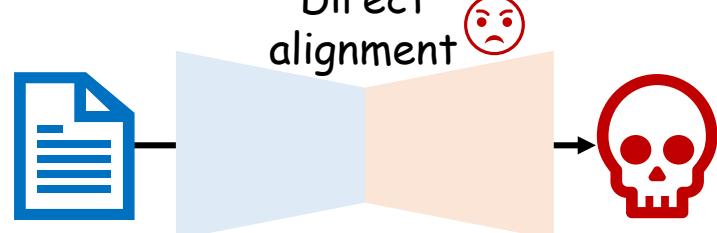


Motivation

- Previous ZSAR methods: **VAE**-based
 - Reconstructs skeleton-text feature pairs via **cross-reconstruction**
 - Recovers skeleton features from text and vice versa



Self-reconstruction

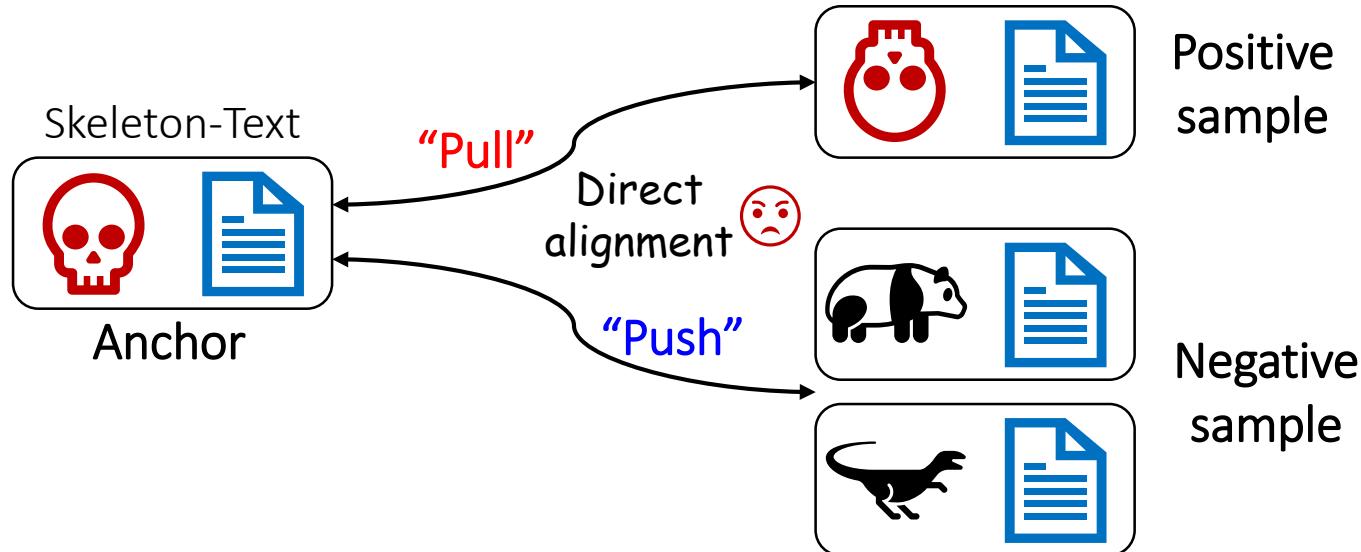


Cross-reconstruction

Direct alignment

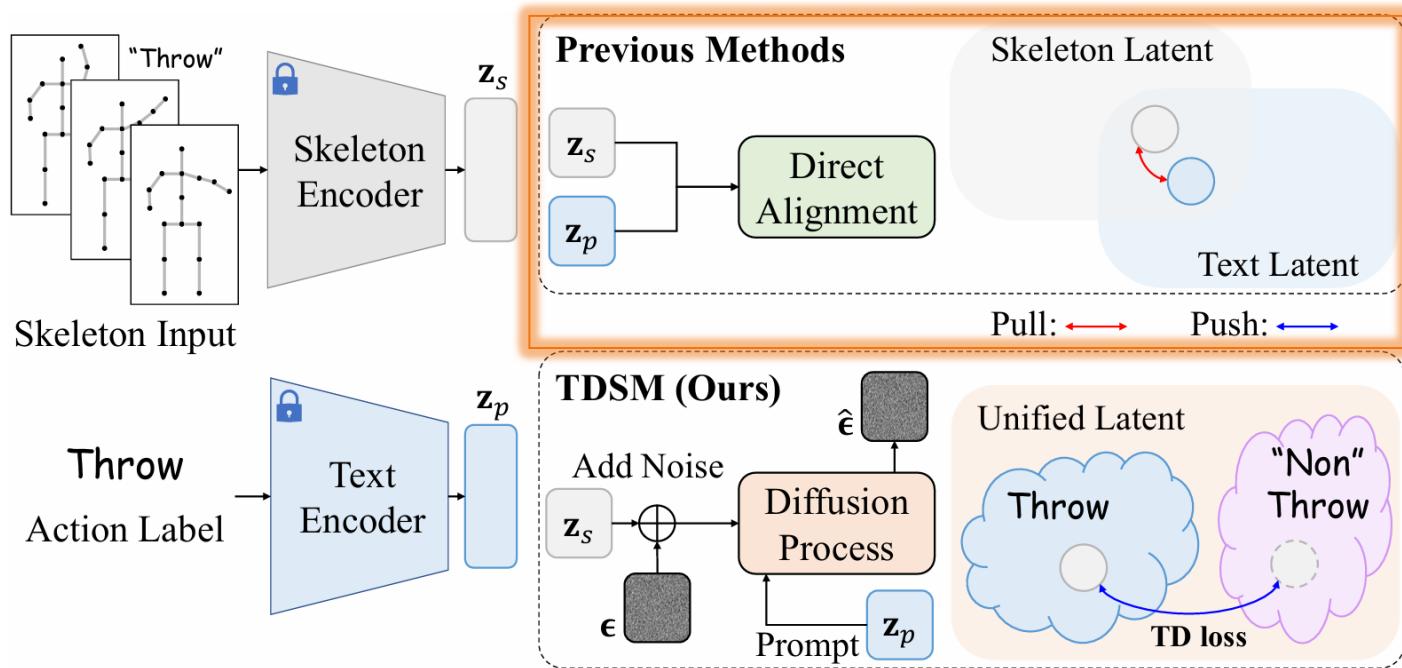
Motivation

- ❑ Previous ZSAR methods: Contrastive learning(**CL**)-based
 - Aligns skeleton and text features by **minimizing feature distance** through contrastive learning



Motivation

- Previous ZSAR methods: VAE-based, CL-based
 - Modality gap due to *direct alignment*



Motivation

- Proposed method: **Triplet Diffusion for Skeleton-Text Matching (TDSM)**
 - **Diffusion models** effectively incorporate **conditioning signals** enabling **strong cross-modal alignment**

a space elevator,
cinematic scifi art

A cheeseburger with juicy
beef patties and melted
cheese sits on top of a toilet
that looks like a throne and
stands in the middle of the
royal chamber.

a hole in the floor of my
bathroom with small
gremlins living in it

a small office made out of car
parts

This dreamlike digital art
captures a vibrant,
kaleidoscopic bird in a lush
rainforest.

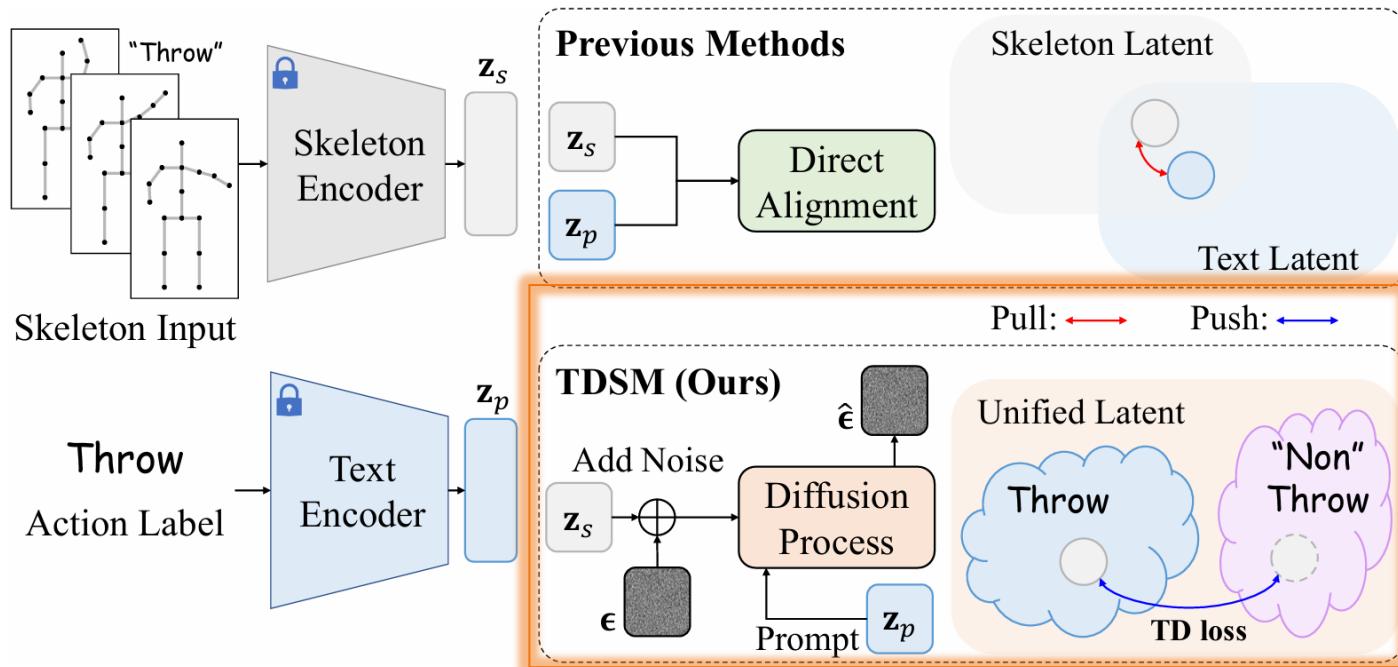
human life depicted entirely
out of fractals

e.g., *text-to-image* generation (Stable Diffusion v3.0)

Rather than the **generative ability**, we are motivated by the **alignment property**

Motivation

- Proposed method: **Triplet Diffusion for Skeleton-Text Matching (TDSM)**
 - Utilizes the **cross-modality alignment power** of **diffusion models**

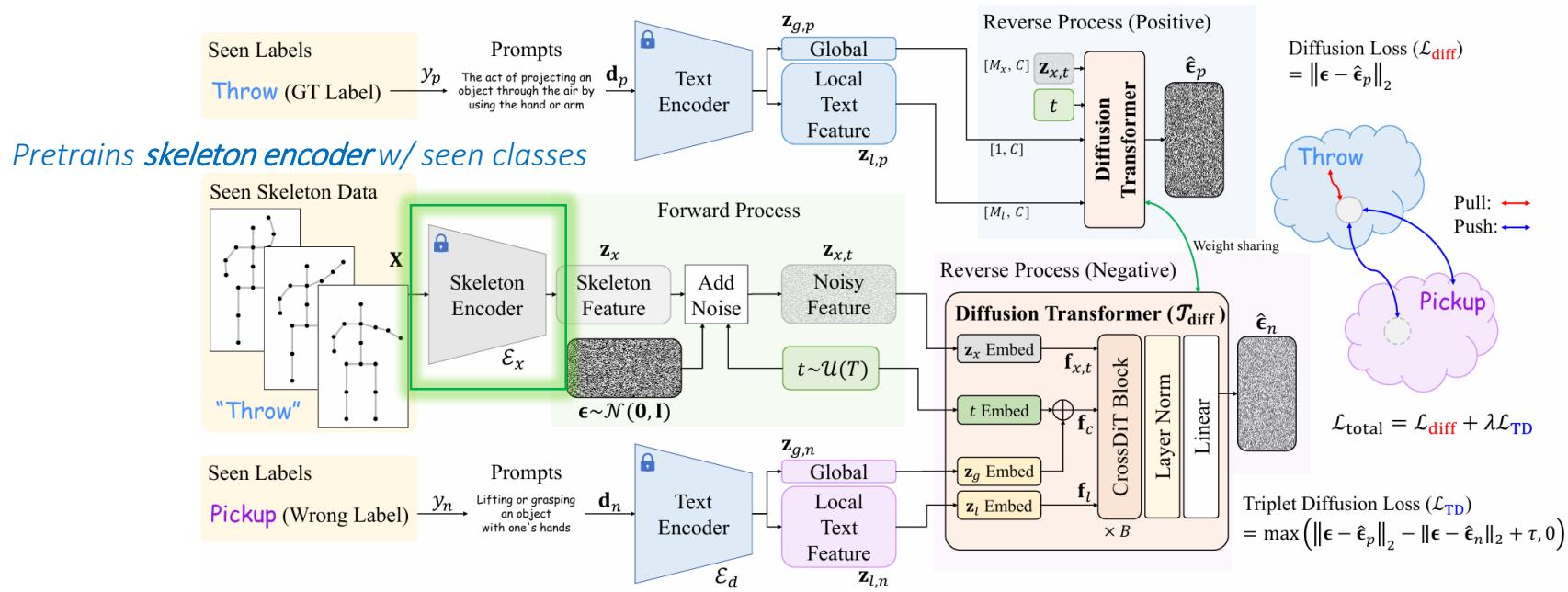


Proposed Method

- We present a diffusion-based action recognition with zero-shot learning for skeleton inputs, **TDSM** which is the *first framework to apply diffusion models*
 - Reverse diffusion process with text prompts
 - ↳ *Implicitly align* the *skeleton features with text prompts (action labels)*
 - Triplet diffusion (TD) loss
 - ↳ Enhance the model's *discriminative power* by *ensuring accurate denoising for correct skeleton-text pairs while suppressing it for incorrect pairs*

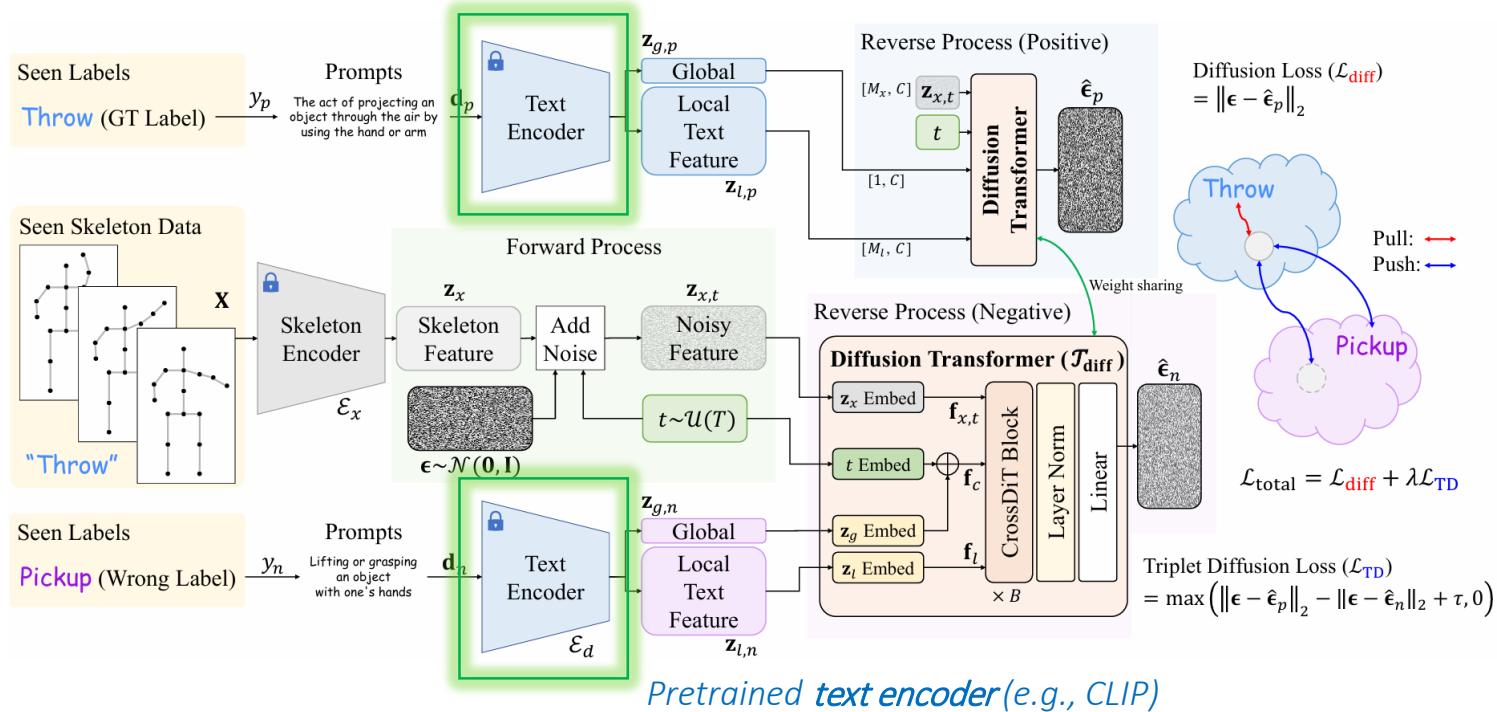
Proposed Method

- Training framework of our TDSM: embedding inputs
 - Performs the diffusion process in a **compact latent space**



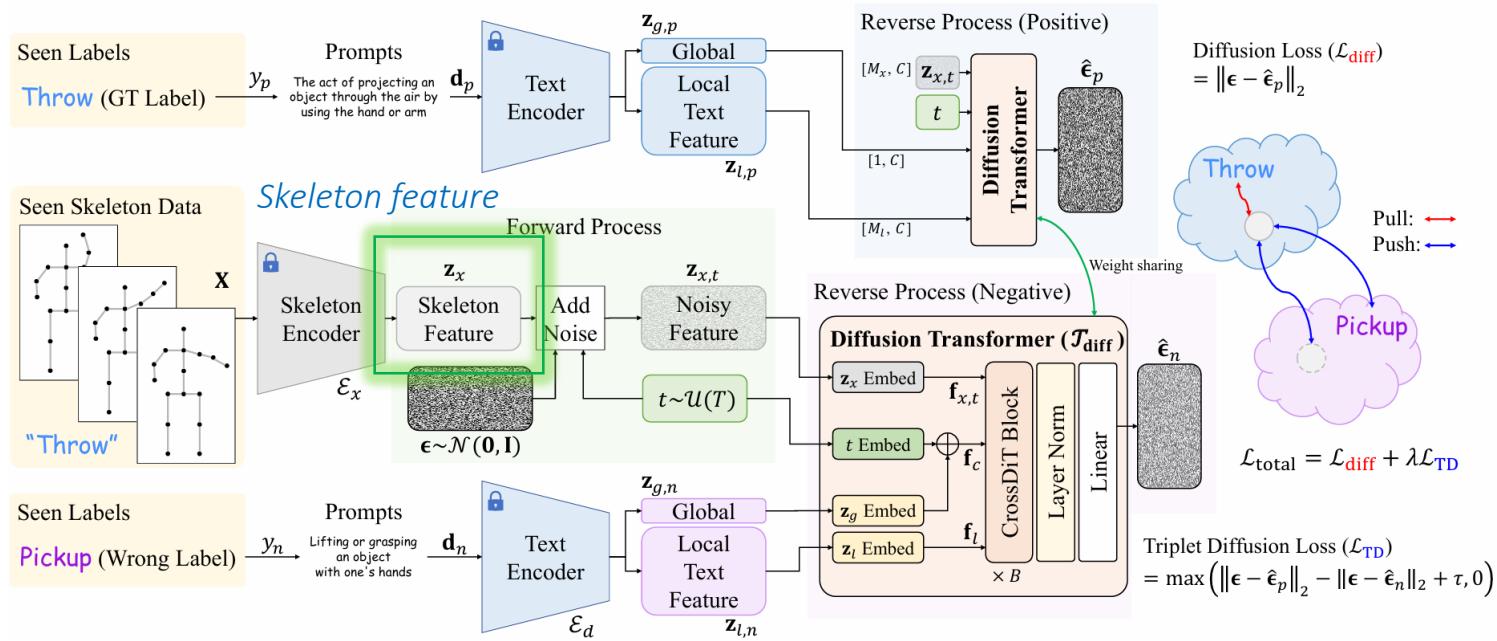
Proposed Method

- Training framework of our TDSM: embedding inputs
 - Performs the diffusion process in a **compact latent space**



Proposed Method

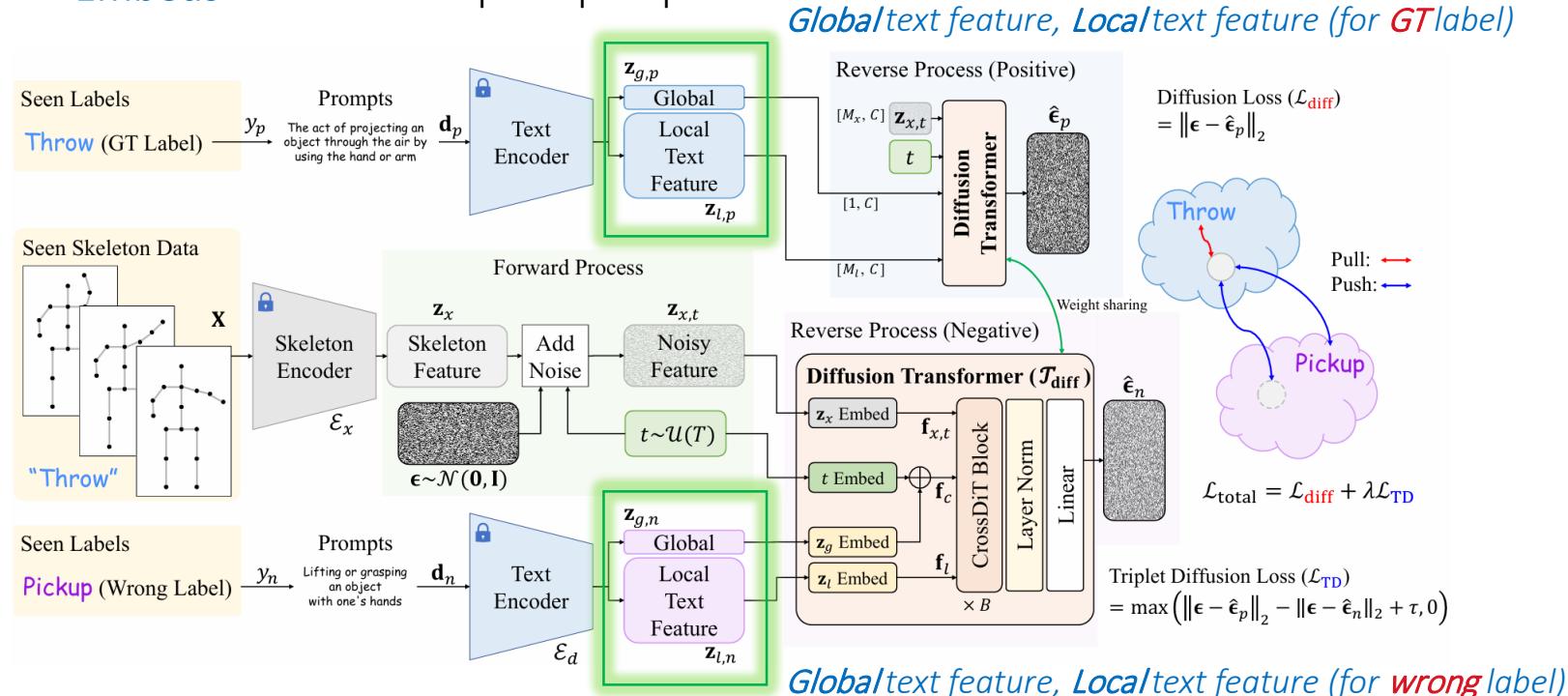
- Training framework of our TDSM: embedding inputs
 - Embeds skeleton and prompt input



Proposed Method

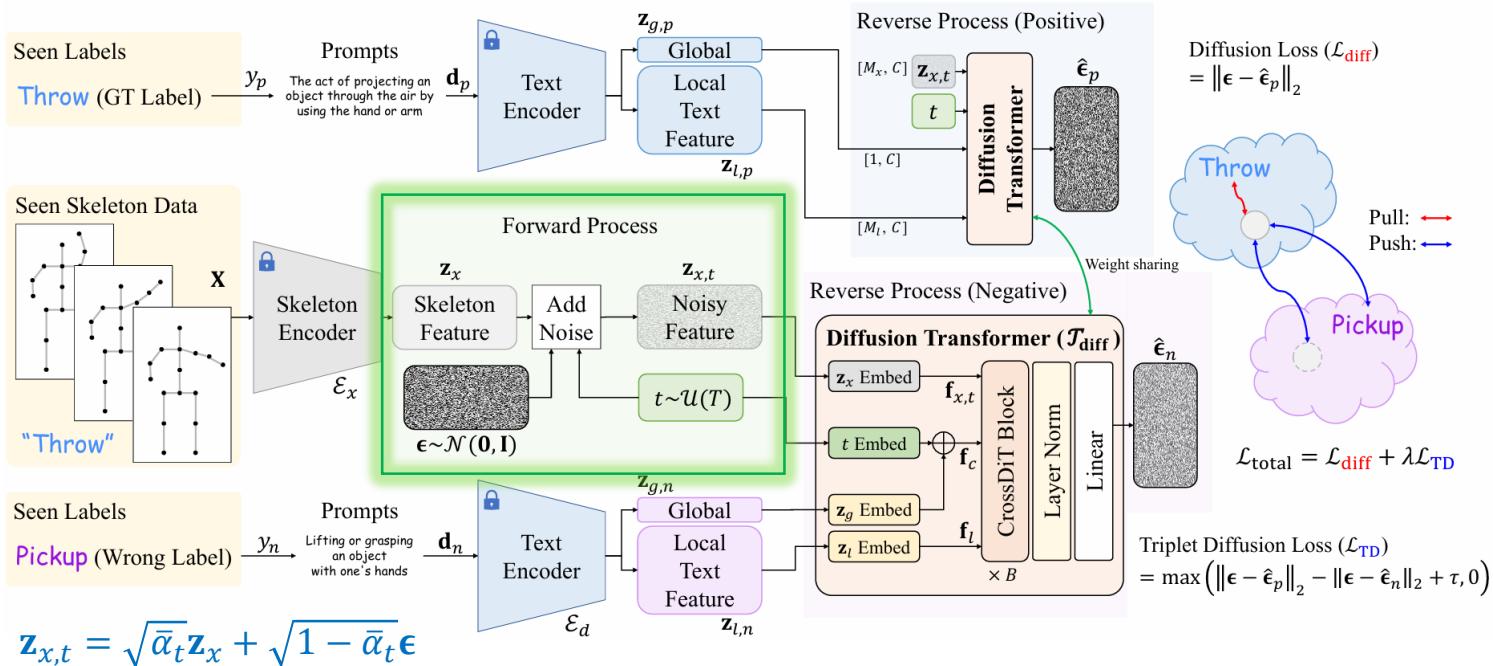
Training framework of our TDSM: embedding inputs

Embeds skeleton and prompt input



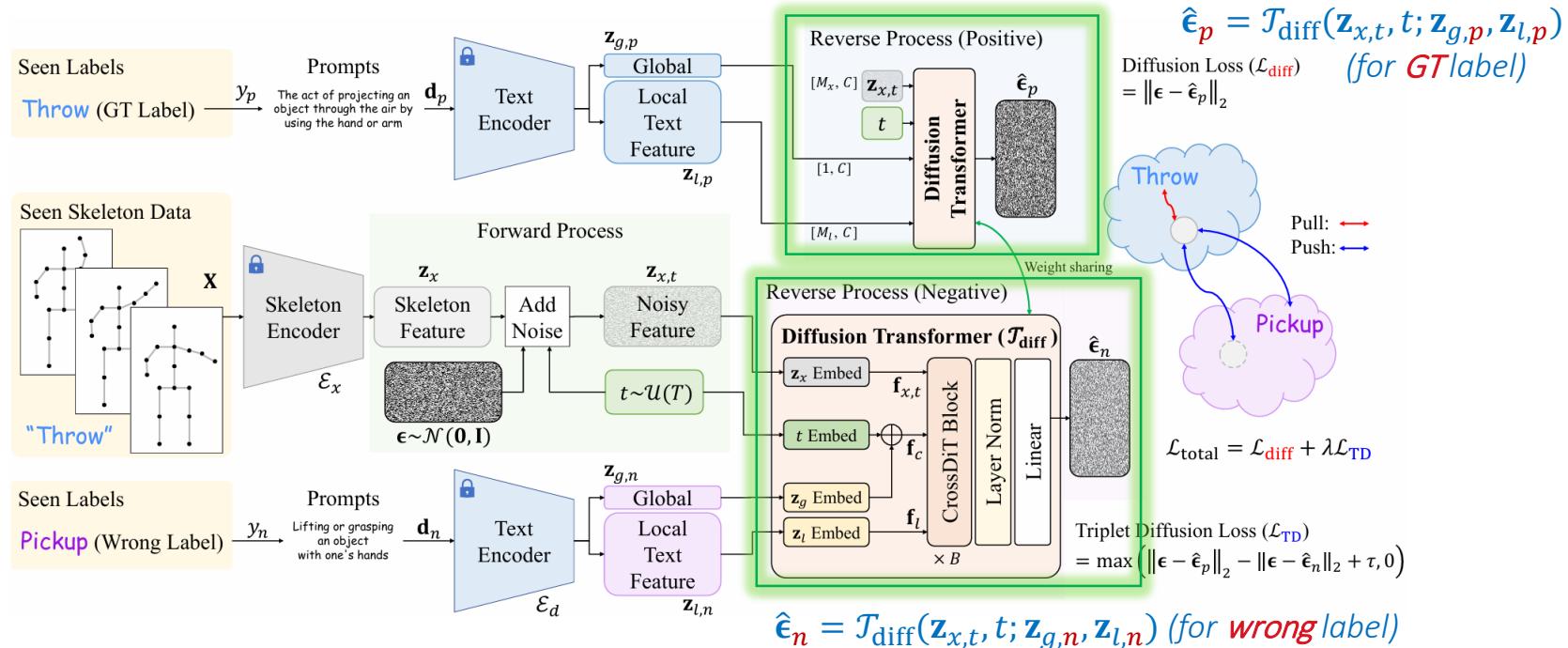
Proposed Method

- Training framework of our TDSM: diffusion process (**forward process**)
 - Random Gaussian **noise is added** to the **skeleton feature** at a random timestep



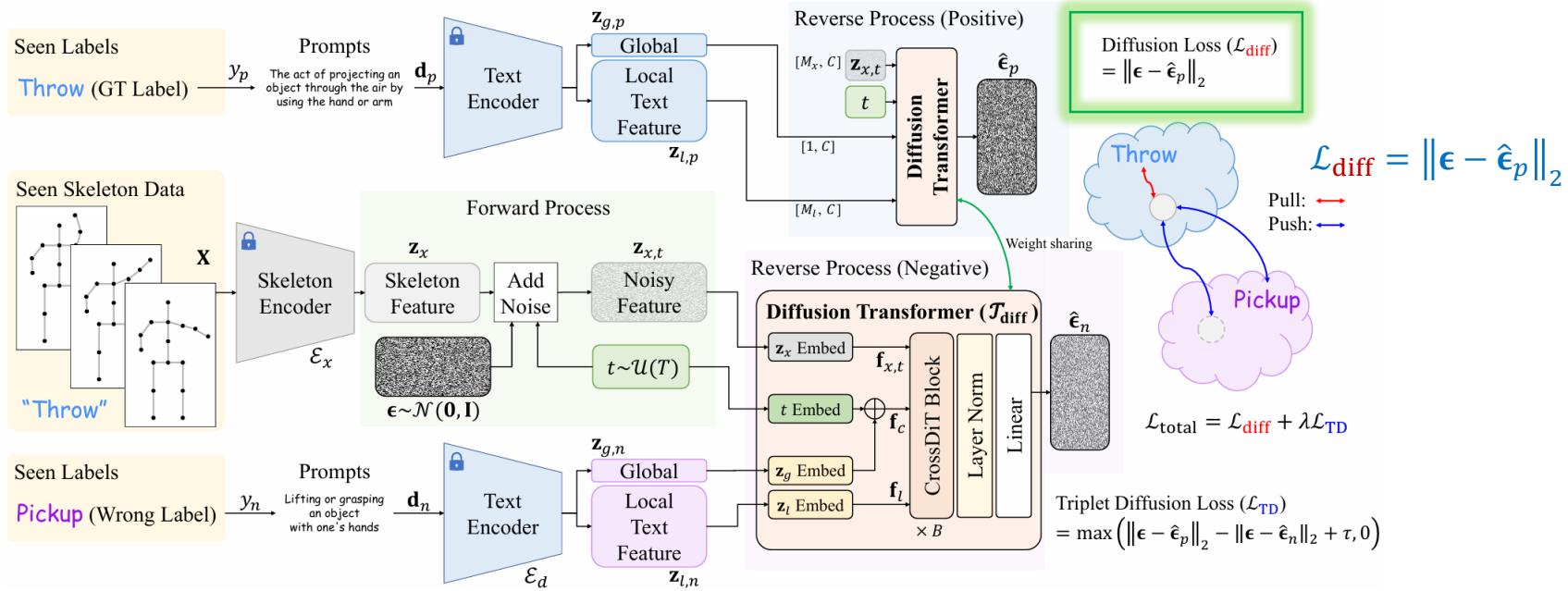
Proposed Method

- Training framework of our TDSM: diffusion process (**reverse process**)
 - Network **predicts noise** from *noisy skeleton feature* conditioned on *text features*



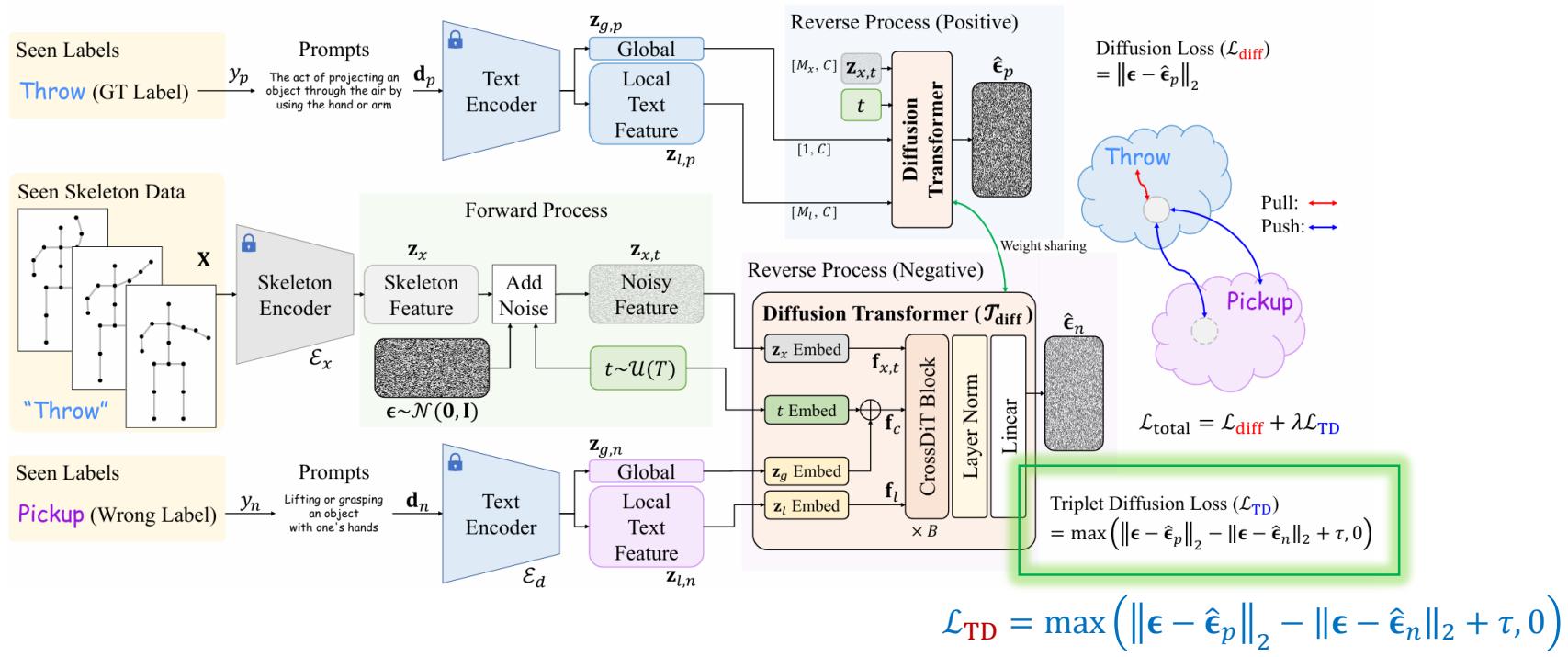
Proposed Method

- Training framework of our TDSM: loss function (**diffusion loss**)
 - Diffusion loss ensures *accurate denoising* for positive skeleton-text(GT) pair



Proposed Method

- Training framework of our TDSM: loss function (**triplet diffusion (TD) loss**)
 - TD loss enhances the ability to *differentiate between GT/wrong label predictions*



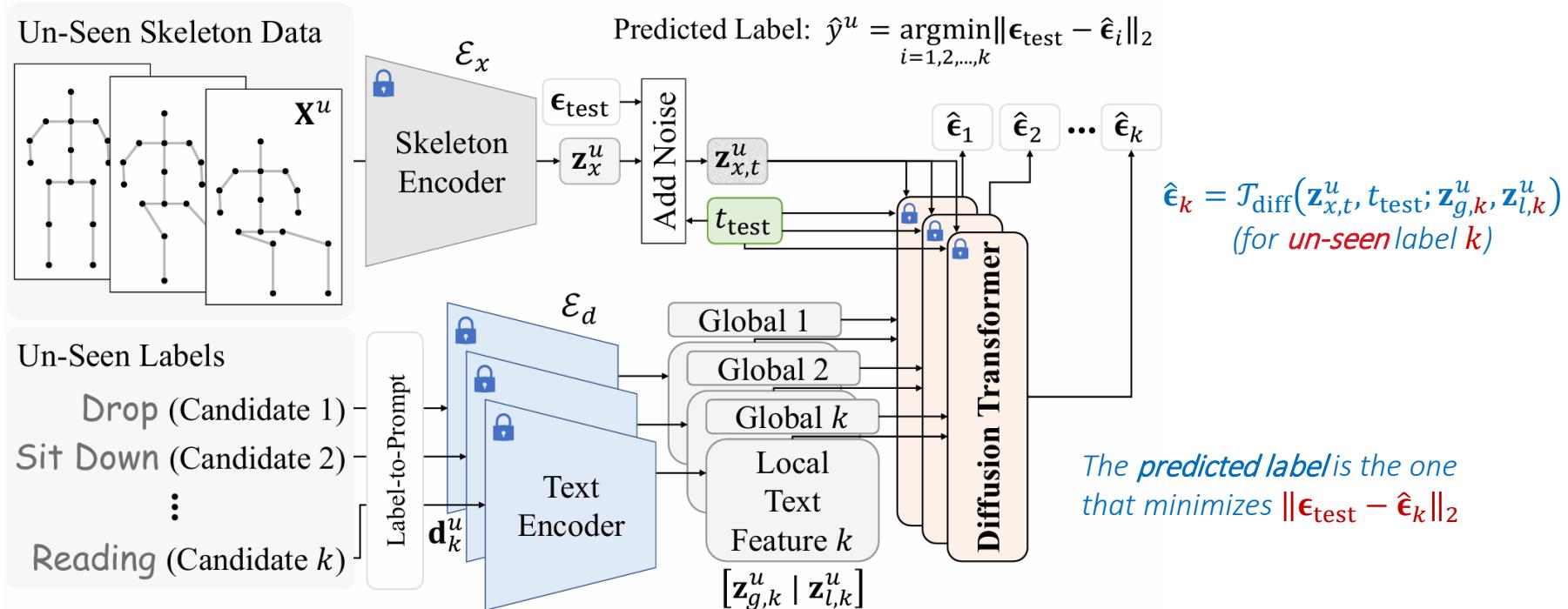
Proposed Method

- Inference phase of our TDSM
 - Enhance discriminative fusion through the TD loss
 - *Denoise GT skeleton-text pairs* effectively while *preventing the fusion of incorrect pairs* within the *seen dataset*
- 👉 Selective denoising process promotes a robust fusion of skeleton and text features
 - Allow the model to develop a *discriminative feature space* that can *generalize to unseen action labels*

Proposed Method

□ Inference phase of our TDSM

- *One-step inference* at a *fixed timestep* (t_{test}) and *fixed noise* (ϵ_{test})



Experiment Results

Quantitative Results (Top-1 Acc \uparrow)

- SynSE (standard) and PURLS (extreme) benchmarks

X/Y split

X: the # of seen classes

Y: the # of unseen classes

Methods	Publications	SysSE NTU-60 (Acc, %) PURLS				SysSE NTU-120 (Acc, %) PURLS			
		55/5 split	48/12 split	40/20 split	30/30 split	110/10 split	96/24 split	80/40 split	60/60 split
ReViSE [26]	ICCV 2017	53.91	17.49	24.26	14.81	55.04	32.38	19.47	8.27
JPoSE [67]	ICCV 2019	64.82	28.75	20.05	12.39	51.93	32.44	13.71	7.65
CADA-VAE [54]	CVPR 2019	76.84	28.96	16.21	11.51	59.53	35.77	10.55	5.67
SynSE [20]	ICIP 2021	75.81	33.30	19.85	12.00	62.69	38.70	13.64	7.73
SMIE [77]	ACM MM 2023	77.98	40.18	-	-	65.74	45.30	-	-
PURLS [79]	CVPR 2024	79.23	40.99	31.05	23.52	71.95	52.01	28.38	19.63
SA-DVAE [38]	ECCV 2024	82.37	41.38	-	-	68.77	46.12	-	-
STAR [8]	ACM MM 2024	81.40	45.10	-	-	63.30	44.30	-	-
TDSM (Ours)	-	86.49	56.03	36.09	25.88	74.15	65.06	36.95	27.21

Experiment Results

Quantitative Results (Top-1 Acc \uparrow)

- SMIE (generalization) benchmark: three distinct split

X/Y split

X: the # of seen classes

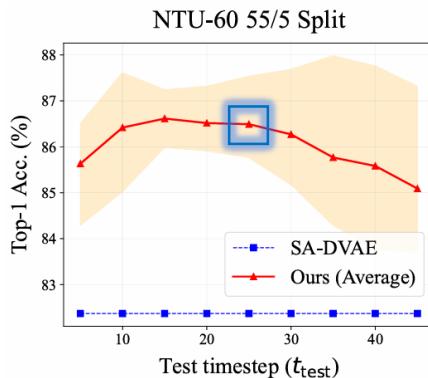
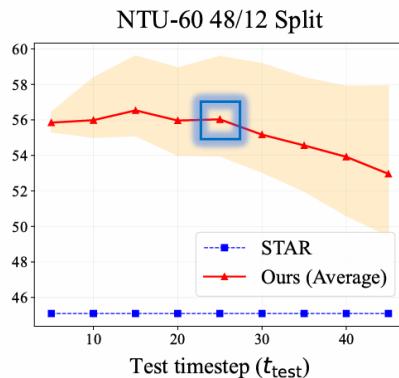
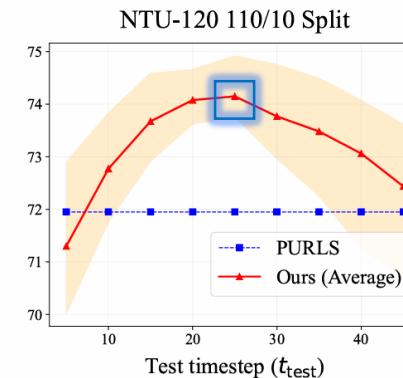
Y: the # of unseen classes

Methods	NTU-60 (Acc, %)	NTU-120 (Acc, %)	PKU-MMD (Acc, %)
	55/5 split	110/10 split	46/5 split
ReViSE [26]	60.94	44.90	59.34
JPoSE [67]	59.44	46.69	57.17
CADA-VAE [54]	61.84	45.15	60.74
SynSE [20]	64.19	47.28	53.85
SMIE [77]	65.08	46.40	60.83
SA-DVAE [38]	<u>84.20</u>	<u>50.67</u>	66.54
STAR [8]	77.50	-	<u>70.60</u>
TDSM (Ours)	88.88	69.47	70.76

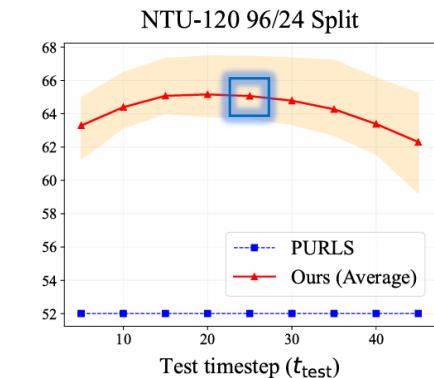
Average of the three splits

Experiment Results

□ Ablation Study: Effect of varying inference timesteps t_{test}



Orange area
: the variation across
10 different random noise



Inference timestep: $t_{\text{test}} = T/2$
(empirically determined)

□ Ablation Study: Loss function & Text feature types

$\mathcal{L}_{\text{diff}}$	\mathcal{L}_{TD}	NTU-60 (Acc, %)		NTU-120 (Acc, %)	
		55/5 split	48/12 split	110/10 split	96/24 split
✓	✓	79.87	53.03	72.44	57.65
	✓	80.90	54.36	70.73	60.95
✓	✓	86.49	56.03	74.15	65.06

Global \mathbf{z}_g	Local \mathbf{z}_l	NTU-60 (Acc, %)		NTU-120 (Acc, %)	
		55/5 split	48/12 split	110/10 split	96/24 split
✓	✓	83.41	51.50	70.14	61.90
	✓	83.33	52.63	69.95	62.10
✓	✓	86.49	56.03	74.15	65.06

Experiment Results

□ Ablation Study: Impact of total timesteps T

*Inference timestep: $t_{\text{test}} = T/2$
(empirically determined)*

Total T	NTU-60 (Acc, %)		NTU-120 (Acc, %)	
	55/5 split	48/12 split	110/10 split	96/24 split
1	85.03	44.10	69.91	60.35
10	84.51	50.89	69.97	62.04
50	86.49	56.03	74.15	65.06
100	83.48	56.27	71.05	64.57
500	81.34	53.43	71.93	60.81

□ Ablation Study: Effect of noise ϵ during training

Gaussian noise ϵ	NTU-60 (Acc, %)		NTU-120 (Acc, %)	
	55/5 split	48/12 split	110/10 split	96/24 split
Fixed	76.40	44.25	64.01	52.21
Random	86.49	56.03	74.15	65.06

Regularization mechanism prevents overfitting

Bridging the **Skeleton-Text** Modality Gap

Diffusion-Powered Modality Alignment
for Zero-shot Skeleton-based Action Recognition

 For more details, please visit here

Thank You!

Project Page