

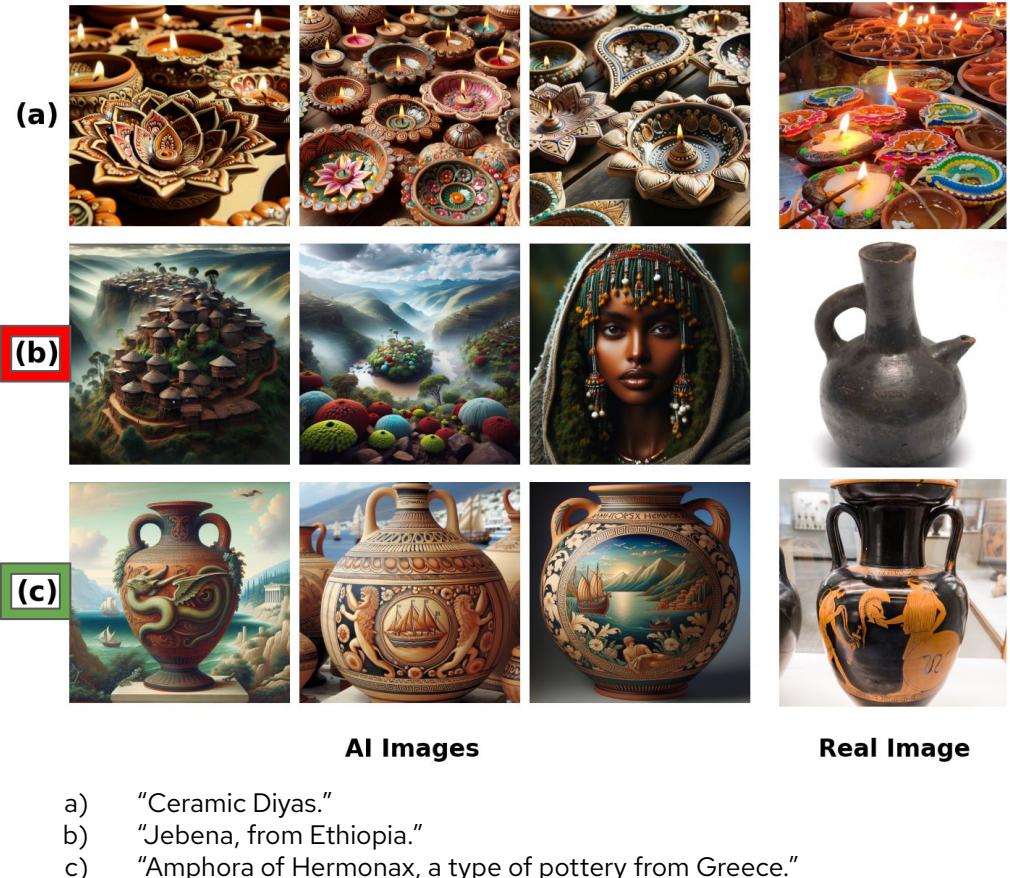
CuRe: Cultural Gaps in the Long-Tail of Text-to-Image Systems

Aniket Rege, Zinnia Nie, Mahesh Ramesh, Unmesh Raskar, Zhuoran Yu,
Aditya Kusupati, Yong Jae Lee, Ramya Korlakai Vinayak



Generative Model Bias

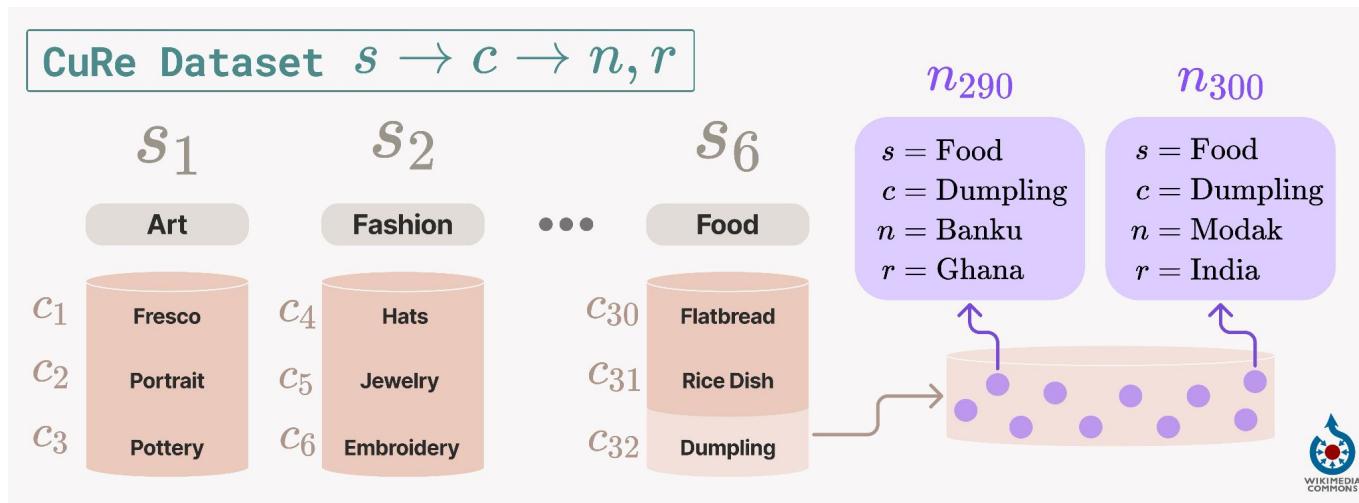
- **Cultural Representativeness (CuRe):** current text-to-image (T2I) systems do not represent global cultures equitably.
- America & Europe dominate pre-training data ("head"), while the "long tail" overlaps more with the Global South. How can we address this?
- Prompt Engineering? Specifying more information in prompt **can help**, but is an **unreliable method** to make the T2I system more **culturally representative**



Images generated with Dall-E 3

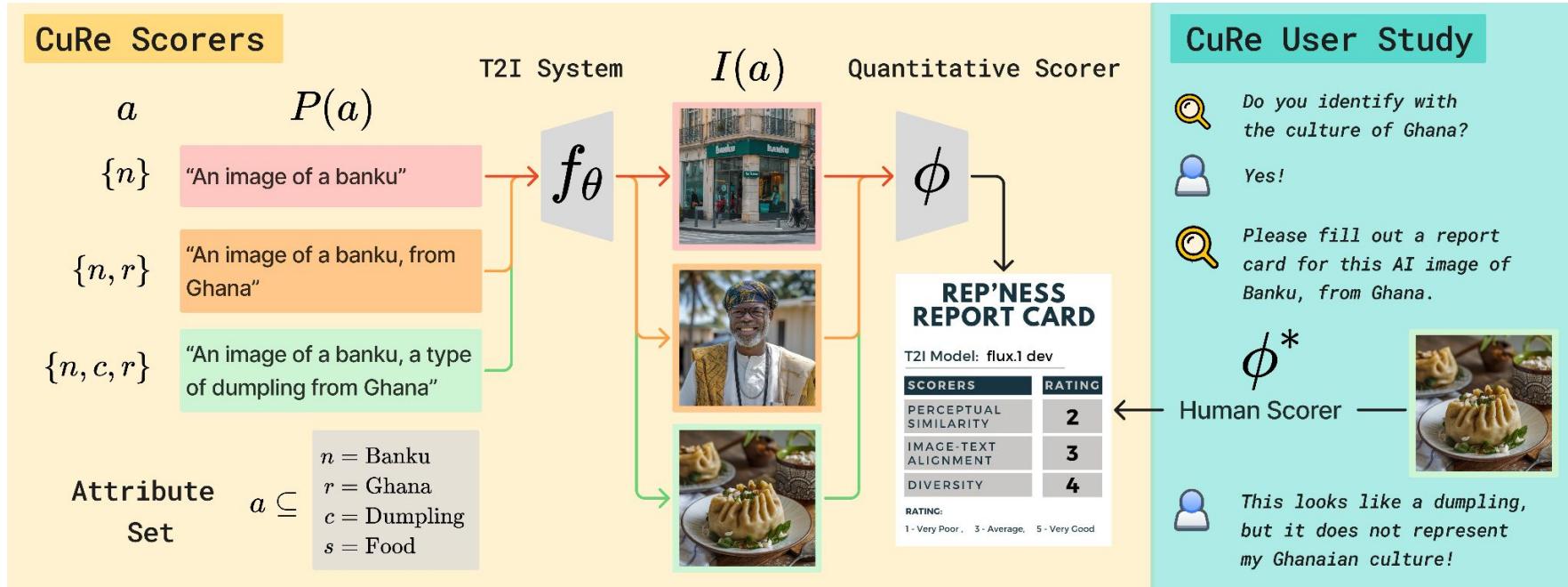
CuRe: a Benchmark and Scoring Suite

- Before solving for T2I system long-tail bias, we need to **accurately measure it**.
- **Ideal**: query humans from each culture to rate outputs (**expensive, not scalable**).
- **Our insight**: approximate CuRe by measuring how T2I systems respond to marginally increasing the attributes (**MIA**) in the text prompt!
- **New benchmark dataset** from Wikimedia with a *hierarchy of attributes* we can increase!



A Lens of Information Gain

Measure CuRe by evaluating how a **marginal change in information** explicitly provided to a T2I system (via text prompt) **changes its behavior**.



Quantitative Scorers

Perceptual Similarity ϕ_{PS}

Info Change: visual closeness of artifact → category (img-img)

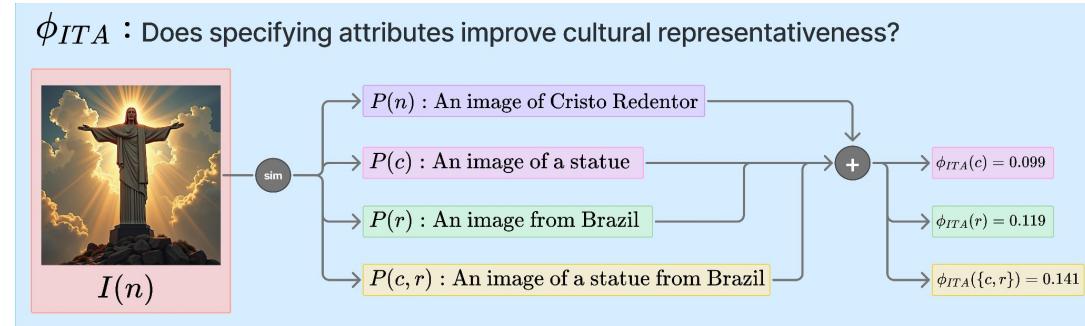
Backbones: SigLIP 2 [12], DINOv2 [13], AIM v2 [14]



Image-Text Alignment ϕ_{ITA}

Info Change: textual closeness of an artifact to a change in attributes (img-txt)

Backbones: OpenCLIP [15], SigLIP 2



Quantitative Scorers (Cont.)

Diversity ϕ_{PS}

Info Change: visual diversity with changing attributes, e.g. Banku → Banku, a type of dumpling (img-img)

Backbones: LPIPS [16], Vendi Scores [17]

ϕ_{DIV} : Does changing attributes make generations more diverse?

$$LPIPS \left(\begin{array}{c} I(n) \quad \text{[Image 1]} \quad \text{[Image 2]} \quad \text{[Image 3]} \quad \text{[Image 4]} \\ I(n, r) \quad \text{[Image 5]} \quad \text{[Image 6]} \quad \text{[Image 7]} \quad \text{[Image 8]} \\ I(n, c) \quad \text{[Image 9]} \quad \text{[Image 10]} \quad \text{[Image 11]} \quad \text{[Image 12]} \\ I(n, c, r) \quad \text{[Image 13]} \quad \text{[Image 14]} \quad \text{[Image 15]} \quad \text{[Image 16]} \end{array} \right) = 0.7$$

A Large Scale User Study

How do we know our scorers are good?

- For whole dataset, query 3 workers from each country who identify with its culture (2700+ workers from Prolific)
- T2I systems evaluated: Stable Diffusion 1.5, Stable Diffusion 3.5, FLUX.1 [dev]

Workers rate from 1 to 5:

1. **Cultural Representativeness** – “Could this image plausibly be found in your country?”
2. **Perceptual Similarity** – visual similarity to four real reference images from Wikimedia.
3. **Ground-Truth Likelihood** – correctness of the image's label (e.g. “Is this an image of spaghetti?”).

We find: stronger rank correlation of our scorers to real human perceptions!

Results: a Teaser

	Images	Metric	ϕ
n_1		[43]	0.67
		[63]	0.79
	ϕ_{CuRe}^*	0.83	
	ϕ_{PS}^*	0.75	
	$\phi_{PS} \downarrow$	0.49	
n_2		[43]	0.62
		[63]	0.71
	ϕ_{CuRe}^*	0.31	
	ϕ_{PS}^*	0.44	
	$\phi_{PS} \downarrow$	0.65	
AI : $I(n)$		Real : $G(n)$	

(a) Perceptual Similarity Scorer (ϕ_{PS}). n_1 : “Chicken Biryani”, n_2 : “Omurice”. Images were generated with SD 3.5 Large.

	Images	Metric	ϕ
n_1		[31]	0.13
		[65]	0.11
	ϕ_{CuRe}^*	1.00	
	ϕ_{PS}^*	0.75	
	$\phi_{ITA} \uparrow$	0.14	
n_2		[31]	0.11
		[65]	0.09
	ϕ_{CuRe}^*	0.17	
	ϕ_{PS}^*	0.15	
	$\phi_{ITA} \uparrow$	0.01	
AI : $I(n)$		Real : $G(n)$	

(b) Image-Text Alignment Scorer (ϕ_{ITA}). n_1 : “Sombrero”, n_2 : “Toquilla”. Images were generated with FLUX.1 [dev].

	Images	Metric	ϕ
n_1		LPIPS(n)	0.72
		VS(c)	0.24
	ϕ_{CuRe}^*	0.93	
	ϕ_{PS}^*	0.66	
	$\phi_{DIV} \downarrow$	0.57	
n_2		LPIPS(n)	0.70
		VS(c)	0.24
	ϕ_{CuRe}^*	0.46	
	ϕ_{PS}^*	0.40	
	$\phi_{DIV} \downarrow$	0.79	
AI : $I(n)$		Real : $G(n)$	

(c) Diversity Scorer (ϕ_{DIV}). n_1 : “Spaghetti and meatballs”, n_2 : “Saimin”. Images were generated with FLUX.1 [dev].

When humans judgments of T2I performance differ (ϕ_{CuRe}^* & ϕ_{PS}^*), our scorers are able to differentiate them (ϕ_{PS} , ϕ_{ITA} , ϕ_{DIV}), but baselines cannot!

Conclusion

Takeaways

- Just like T2I systems, scorers do not work equally well across global cultures
- Lens of **marginally increasing attributes** provides valuable signal to **approximate human judgments of cultural representativeness** and perceptual similarity to ground-truth

More in our Paper:

- Which scorer configurations (backbone, attribute subset) most closely matches human judgments → Spearman Correlation plots for each scorer
- User study UI, questions, design choices
- How do strong multimodal LLMs perform?
- Long tail analysis in LAION, worker disagreement, scorers as long-tail predictors
- Lots of qualitative examples & discussion

Q&A

Thank you for attending!

Get in touch with me - happy to chat and open to collaborations!

Twitter: @wregss

Website: <https://aniketrege.github.io/>

Email: aniketr@cs.wisc.edu

CuRe
Project
Page

References

- [1] Hertz, Amir, et al. "Prompt-to-prompt image editing with cross attention control." arXiv preprint arXiv:2208.01626 (2022).
- [2] Brooks, Tim, Aleksander Holynski, and Alexei A. Efros. "Instructpix2pix: Learning to follow image editing instructions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
- [3] Li, Yuheng, et al. "Gligen: Open-set grounded text-to-image generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
- [4] Li, Yuheng, et al. "Generate Anything Anywhere in Any Scene." arXiv preprint arXiv:2306.17154 (2023).
- [5] Mohammad Norouzi, William Chan, Jonathan Ho, Chitwan Saharia, Shayaan Abdullah, Jenny Lei, and Jacob Lu. ideogram.ai. <https://ideogram.ai/>, 2023.
- [6] Schuhmann, Christoph, et al. "Laion-5b: An open large-scale dataset for training next generation image-text models." Advances in Neural Information Processing Systems 35 (2022): 25278-25294.

References

- [7] Yu, Jiahui, et al. "Scaling autoregressive models for content-rich text-to-image generation." arXiv preprint arXiv:2206.10789 2.3 (2022): 5.
- [8] Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in Neural Information Processing Systems 35 (2022): 36479-36494.
- [9] Ramesh, Aditya, et al. "Zero-shot text-to-image generation." International Conference on Machine Learning. PMLR, 2021.
- [10] Sharma, Piyush, et al. "Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning." Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018.
- [11] Thomee, Bart, et al. "YFCC100M: The new data in multimedia research." Communications of the ACM 59.2 (2016): 64-73.
- [12] Tschannen, Michael, et al. "Siglip 2: Multilingual vision-language encoders with improved semantic understanding, localization, and dense features." arXiv preprint arXiv:2502.14786 (2025).
- [13] Oquab, Maxime, et al. "DINOv2: Learning Robust Visual Features without Supervision." Transactions on Machine Learning Research Journal (2024).

References

- [14] Fini, Enrico, et al. "Multimodal autoregressive pre-training of large vision encoders." Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.
- [15] Cherti, Mehdi, et al. "Reproducible scaling laws for contrastive language-image learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023.
- [16] Zhang, Richard, et al. "The unreasonable effectiveness of deep features as a perceptual metric." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- [17] Senthilkumar, Nithish Kannen, et al. "Beyond aesthetics: Cultural competence in text-to-image models." Advances in Neural Information Processing Systems 37 (2024): 13716-13747.

Bonus Slides

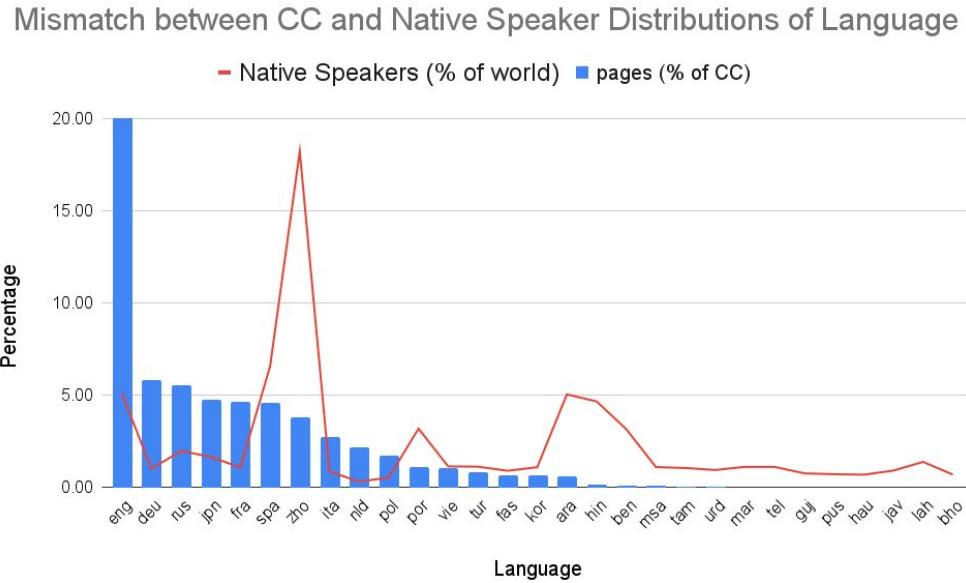
Where Does the Bias Come From?

What do we pretrain large T2I systems on?

→ Filtering Common Crawl

Common Recipe: LAION [6] subset + internal data

- Parti [7] → LAION-400M + FIT400M + JFT-4B
- Imagen [8] → LAION-400M + Internal 460M
- Dall-E [9] → CoCa [10] + YFCC100M [11] subset (~1B scale)



46% of CC is in English, but only 5% of world are native English speakers, while Chinese is natively spoken by 18% of the world, but is only 4% of CC.

Common Crawl language statistics from:
<https://commoncrawl.github.io/cc-crawl-statistics/plots/languages.html>

Image Synthesis

- **Goal:** Imagination to Image Translation
- Many existing works towards controllable image generation
 - Prompt-to-Prompt [1]
 - InstructPix2Pix [2]
 - GLIGEN [3], PACGen [4]
- **Problems:**
 - We can't fully specify what we imagine through text
 - To give grounding info (bbox, edges), we need an image of what we want a priori

Humans create art iteratively

Francesco del Giocondo
Draw my wife please.

Da Vinci
How's this?

Francesco del Giocondo
... no

Da Vinci
sigh... nobody appreciates genius

Image Credits : <https://www.pinterest.com/pin/311029917987716070/>

Imagination

What if Sir
Floofy
was a news
anchor?

Describe the
image in my
head with text

“Square photograph of a feline news anchor at a studio, microphone ready, delving into the topic of whether it's preferable to be inside or outside. Behind the cat, the background showcases a split screen of a warm living room and a sunny park with the headline 'Breaking Debate: Inside vs. Outside'”

DALL·E 3

Keep modifying the
description until we
like the generated Image