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A Unified Model for Image and Depth Vision Tasks
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A Unified Model for Image and Depth Vision Tasks
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A Unified Model for Image and Depth Vision Tasks
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Joint Distribution Modeling for Generative Tasks

« Joint distribution modeling can cover various generative tasks
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Dedicated Pipeline for Separate Noise Level Training

 Building on Flux, we introduce depth branch and joint connection module
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Dedicated Pipeline for Separate Noise Level Training

« Unbalanced timestep sampling — Balancing the combination of noise levels

: Joint connection module 6, - LORA
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Dedicated Pipeline for Separate Noise Level Training

« Unbalanced timestep sampling — Balancing the combination of noise levels

: Joint connection module & : LoRA | < Unbalanced timestep sampling >
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Dedicated Pipeline for Separate Noise Level Training

« Adaptive scheduling weights — Guiding noisier modality with cleaner modality
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Dedicated Pipeline for Separate Noise Level Training

« Adaptive scheduling weights — Guiding noisier modality with cleaner modality
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Dedicated Pipeline for Separate Noise Level Training

« Adaptive scheduling weights — Guiding noisier modality with cleaner modality

: Joint connection module b, : LORA < Joint connection module >
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Effects of Proposed Methods on Generative Tasks

« Unbalanced Timestep Sampling (UTS) and Adaptive Scheduling Weights (ASW)
- Significant improvement in image and depth joint generative tasks
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Experiment - Joint Generation

« Qutstanding joint generation capability compared to LDM3D [1] and JointNet [2]

“A big brown dog sitting in the back of ared truck”
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[1] Stan, Gabriela Ben Melech, et al. "Ldm3d: Latent diffusion model for 3d," arXiv 2023. AN //
[2] Zhang, Jingyang, et al. "Jointnet: Extending text-to-image diffusion for dense distribution modeling,” ICLR 2024. 12



Experiment — Feature analysis

Feature visualization of RGB and Depth branches following Tumanyan et a/. [3]
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[3] Tumanyan et al. "Plug-and-play diffusion features for text-driven image-to-image translation,” CVPR 2023. 13



Experiment - Depth Estimation

« Superior performance compared to generative joint generation methods

« Comparable accuracy to generative depth estimation methods

The evaluation metric is Absolute Mean Relative Error (AbsRel),. Lower is better.

2] Zhang, Jingyang, et al. "Jointnet: Extending text-to-image diffusion for dense distribution modeling,” ICLR 2024.

4] Ke, Bingxin, et al. "Repurposing diffusion-based image generators for monocular depth estimation," CVPR 2024.

5] Fu, Xiao, et al. "Geowizard: Unleashing the diffusion priors for 3d geometry estimation from a single image,” ECCV 2024.
6] Li, Xirui, et al. "A simple approach to unifying diffusion-based conditional generation,” ICLR 2025.
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Types Methods NYUv2 ScanNet DIODE
Generative Marigold [4] 5.5 6.4 30.8
depth estimation Geowizard [5] 5.2 6.1 29.7
JointNet [2] 13.7 14.7 35.0
Generative UniCon [6] 7.9 9.2 —
joint generation Ours 5.7 6.6 27.3
Ours + finetune 5.0 5.6 26.6
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Experiment - Depth-Conditioned Image Generation

* More text-aligned and realistic results compared to JointNet [2] and UniCon [6]
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[2] Zhang, Jingyang, et al. "Jointnet: Extending text-to-image diffusion for dense distribution modeling,” ICLR 2024.
[6] Li, Xirui, et al. "A simple approach to unifying diffusion-based conditional generation,” ICLR 2025.



Additional Capability: Joint Panoramic Generation

Expansive view of an ancient Roman city with grand wmarble buildings, a wassive
colosseum peoples and lively wmarkets




Additional Capability: 3D-aware Cartoon Content Generation

“A pixelated wizavd holding 3 staf§, vobe folds wmade of squave clusters”
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Conclusion

« We present JointDiT, a model for robust joint image-depth distribution modeling,
enabling diverse tasks by controlling each branch’s timestep:

1. Joint generation
2. Depth estimation

3. Depth-conditioned image generation

« We propose the adaptive scheduling weights and unbalanced timestep sampling
— Effective above three tasks!
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