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Background – Meta-Learning

• Traditional machine learning approach

• one separate model per task

• Meta-learning approach

• learns learning strategy that generalizes across various tasks (Learn to Learn)

• trains a meta-learner that can adapt quickly to a new task, even with only few data samples (few-shot)

• Example: quickly transfers know-how from skateboarding → snowboarding or surfing

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in ICML, 2017



Background – Federated Learning (FL)

• Privacy-Preserving Collaborative Learning

• Multiple devices or institutions train together without ever sharing raw data

• Each client trains locally, then only model updates (parameters/gradients) are sent to a central server

• Server aggregates the updates into a global model and broadcasts it back to clients for the next round

Server

Clients

• Global model

• Local models

• Local data



Background – Neural Fields (NFs)

• Coordinate-based Neural Fields

• A deep neural network to approximate continuous 

signals

• represent continuous functions that map spatial 

coordinates to signal values such as color or density

• Delivers infinite resolution and high memory-efficiency 

compared with traditional pixel- or point-grid 

representations

• NeRF (Neural Radiance Fields)

• Learns a neural field from multiple 2D images of a 3D 

object or scene

• We can render new views of the same object/scene 

from arbitrary camera poses

E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum, “From data to functa: Your data point is a function and you can treat it like one,” arXiv:2201.12204, 2022.
B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, 
2021.



Motivation – Scenario (Local method)

We want to train a Neural Field Meta-Learner 

which achieves Fast Optimization and Robust Reconstruction Performance,

even with Few-Shot



Motivation – Scenario (FML)

• Meta-learning requires various task data

• However, each client only has data from one car

• ⇒ Federated Meta-Learning (FML)

• Multiple clients collaborate

• Train a global meta-learner

• Without sharing raw data

Global
Neural Field

Meta-Learner



Motivation – Privacy Leakage in FML for NFs

Causes

1. Each client only has a single task

• e.g., car, face, body, …

• the meta-learner functions as a neural field

(meta-optimization == 2nd-order optimization)

2. Neural fields inherently encapsulate the data

• shared meta-learner can be exploited to infer 

data,

which violate the client's privacy



Motivation

We propose

a novel Federated Meta-Learning approach 

for Neural Fields

that prevents privacy leakage,

called FedMeNF

Method Local Federated Meta-Learning Ours

Fast optimization ✗ ✓ ✓

Few-shot adaptation ✗ ✓ ✓

Privacy preservation ✓ ✗ ✓



Approach – Privacy Metric

• We need a quantitative metric for “How well did the server reconstruct the client’s private data?”

• Peak Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅)

• standard image quality metric in reconstruction & novel view synthesis

• higher 𝑃𝑆𝑁𝑅 ⇒ reconstructed image is closer to ground truth

• 𝑃𝑆𝑁𝑅𝑝

• Ground-truth (GT): client’s private image

• Generated image: server-side reconstruction via shared meta-learner

• higher 𝑃𝑆𝑁𝑅𝑝 ⇒ server-reconstructed image is closer to client’s private image



Approach – Privacy Metric

• 𝑃𝑆𝑁𝑅𝑝 = 10 log10
𝑅

𝐿 𝑤,𝑄𝑚

• 𝐿 𝑤, 𝑄𝑚 : MSE loss of the meta-learner on the client’s local data

• smaller 𝐿 𝑤, 𝑄𝑚 ⇒ larger 𝑃𝑆𝑁𝑅𝑝 ⇒ stronger privacy leakage

• Δ𝐿𝑖+1 = 𝐿 𝑤𝑖+1, 𝐵𝑄 − 𝐿 𝑤𝑖 , 𝐵𝑄

• change in MSE loss ⇒ change in 𝑃𝑆𝑁𝑅𝑝

• The first-order approximation of Δ𝐿𝑖+1

Δ𝐿𝑖+1 ≈ −𝜆𝑜 ∙ ∇𝑤𝑖
𝐿 𝑤𝑖 , 𝐵𝑄

2
= −𝜆𝑜 ∙ 𝑔𝐾

2 ≤ 0

• Always ≤ 0 ⇒ MSE loss ↓ ⇒ 𝑃𝑆𝑁𝑅𝑝 ↑ each outer step



Approach – Privacy-Preserving Loss Function

• Δ𝐿𝑖+1 ≈ −𝜆𝑜 ∙ ∇𝑤𝑖
𝐿 𝑤𝑖 , 𝐵𝑄

2
= −𝜆𝑜 ∙ 𝑔𝐾

2 ≤ 0

• We define a privacy-preserving loss function that constrains the magnitude of 𝑔𝐾

𝐿𝑝𝑝 𝑤𝑖 , 𝜑𝐾 , 𝐵𝑄 = 𝐿 𝜑𝐾 , 𝐵𝑄 − 𝛾 ∙ 𝐿 𝑤𝑖 , 𝐵𝑄

• 𝛾 is a regularization coefficient that determines the portion of 𝑔𝐾

• The first-order approximation of Δ𝐿𝑖+1 with 𝐿𝑝𝑝

Δ𝐿𝑖+1 ≈ −𝜆𝑜(1 − 𝛾) 𝑔𝐾
2 ≤ 0

• Setting 𝛾 closer to 1 ⇒ Δ𝐿𝑖+1 closer to 0 ⇒ keep the rise in 𝑃𝑆𝑁𝑅𝑝



• Existing Meta-optimization: memorizes the training data

• Privacy-Preserving Meta-optimization: avoids memorizing the data & learns only the learning procedure

Approach – Privacy-Preserving Loss Function



Experiments - Settings

• Baselines

• Federated Meta-Learning = Federated Learning + Meta-Learning

• Federated Learning: FedAvg, FedProx, Scaffold, FedNova, FedExP, and FedACG

• Meta-Learning: MAML, FOMAML, Reptile, and meta-NSGD

• Datasets

Modality Dataset Scenario

3D (NeRF)
ShapeNet 3D Car

FaceScape 3D Face

Image PetFace Cat image

Video GoldDB Golf-swing video



Experiments – Privacy-Performance Trade-off

• Our FedMeNF establishes an efficient frontier that balances privacy protection and reconstruction 

performance



• [Left] Reconstruction results of the client’s private image on the server: (b) using MAML and (c) using FedMeNF

• [Right] Reconstruction results of a new private image on the client: (e) using MAML and (f) using FedMeNF

• [Upper] Reconstruction results of the client’s private video on the server: (a) using MAML and (b) using FedMeNF

• [Lower] Reconstruction results of a new private video on the client: (c) using MAML and (d) using FedMeNF

Experiments – Privacy-Performance Trade-off



Experiments – Test-Time Optimization

• Competitive optimization speed and reconstruction quality



Experiments – Correlation between ϵ and Privacy Metrics

• We examine the correlation between the privacy metrics and ϵ of the differential privacy framework 

using meta-NSGD.

• The privacy metrics degrade as ϵ increases, supporting their generalizability as a measure of privacy 

leakage.



• Competitive optimization speed and reconstruction quality

Experiments – Qualitative Results



Summary

• The first study to address federated learning for neural fields on private data

• We theoretically and empirically show how privacy leakage occurs during the federated meta-learning 

for neural fields

• We propose FedMeNF that preserves the privacy of local data with minimal impact on optimization 

speed and reconstruction quality

• Comprehensive experiments on FedMeNF across various data modalities, private data sizes, and levels 

of data diversity, outperforming baseline methods
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