

Privacy-Preserving Federated Meta-Learning for Neural Fields

Junhyeog Yun, Minui Hong, Gunhee Kim

Vision and Learning Lab, Seoul National University

junhyeog@snu.ac.kr

ICCV 2025 Poster

SEOUL NATIONAL UNIV.
VISION & LEARNING

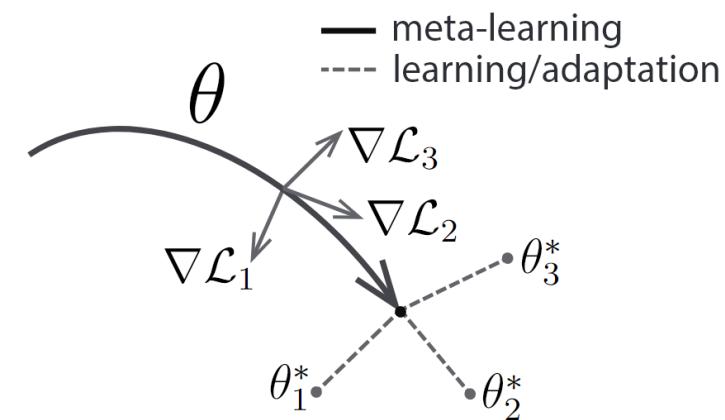
ICCV
OCT 19-23, 2025
A red hibiscus flower with a yellow center, positioned between the text 'ICCV' and 'HONOLULU HAWAII'.
HONOLULU
HAWAII

Outline

- Background
 - Federated Learning (FL)
 - Meta-Learning
 - Neural Fields (NFs)
- Motivation
 - Scenario
 - Privacy Leakage in FML for NFs
- Approach (FedMeNF)
 - Privacy Metrics
 - Privacy-Preserving Loss Function
- Experiments
- Summary

Background – Meta-Learning

- Traditional machine learning approach
 - one separate model per task
- Meta-learning approach
 - learns learning strategy that generalizes across various tasks (**Learn to Learn**)
 - trains a meta-learner that can **adapt quickly to a new task**, even with only few data samples (**few-shot**)
- Example: quickly transfers know-how from **skateboarding** → **snowboarding or surfing**



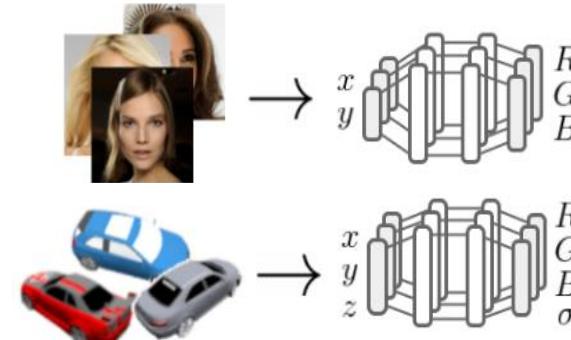
Background – Federated Learning (FL)

- Privacy-Preserving Collaborative Learning
- Multiple devices or institutions **train together without ever sharing raw data**
- Each client trains locally, then **only model updates (parameters/gradients) are sent to a central server**
- Server **aggregates the updates into a global model** and broadcasts it back to clients for the next round

Background – Neural Fields (NFs)

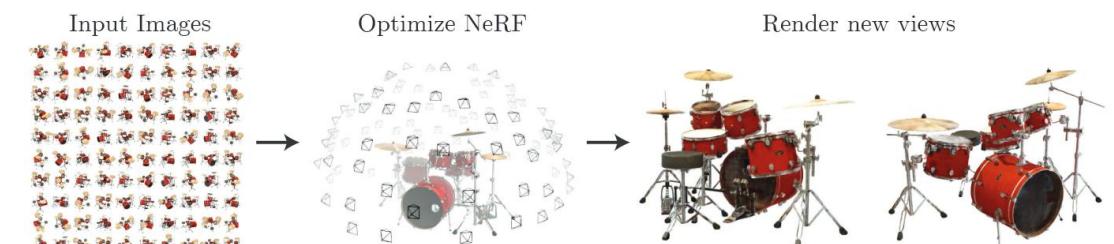
- **Coordinate-based Neural Fields**

- A deep neural network to approximate **continuous signals**
- represent continuous functions that **map spatial coordinates to signal values such as color or density**
- Delivers infinite resolution and **high memory-efficiency** compared with traditional pixel- or point-grid representations



- **NeRF (Neural Radiance Fields)**

- Learns a neural field from multiple 2D images of a 3D object or scene
- We can render new views of the same object/scene from arbitrary camera poses



E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum, “From data to functa: Your data point is a function and you can treat it like one,” arXiv:2201.12204, 2022.

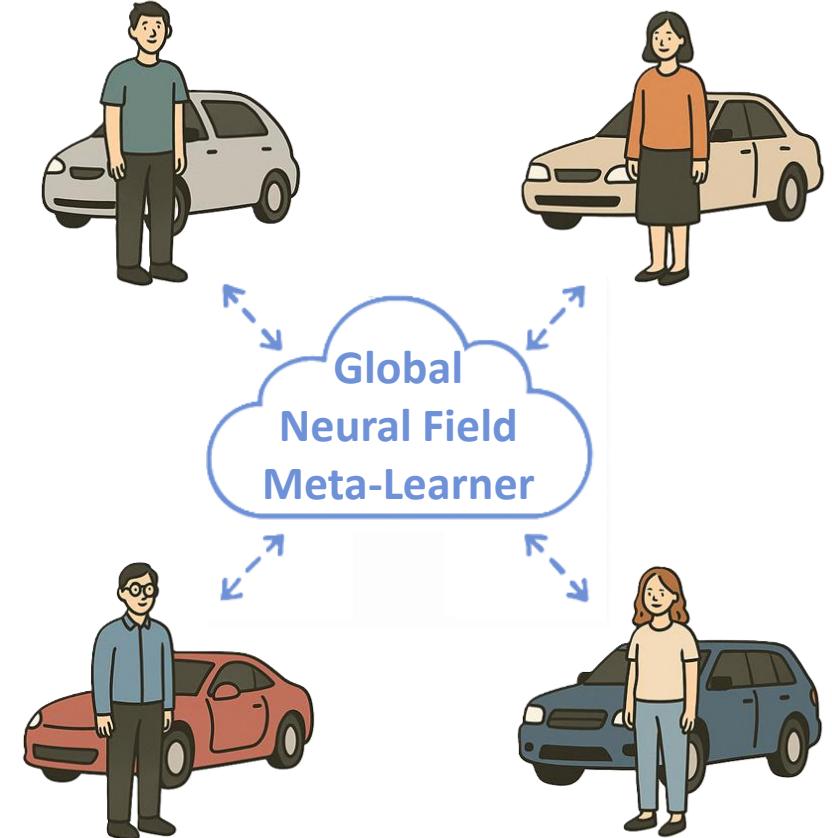
B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, 2021.

Motivation – Scenario (*Local* method)

We want to train a **Neural Field Meta-Learner**
which achieves **Fast Optimization** and **Robust Reconstruction Performance**,
even **with Few-Shot**

Motivation – Scenario (FML)

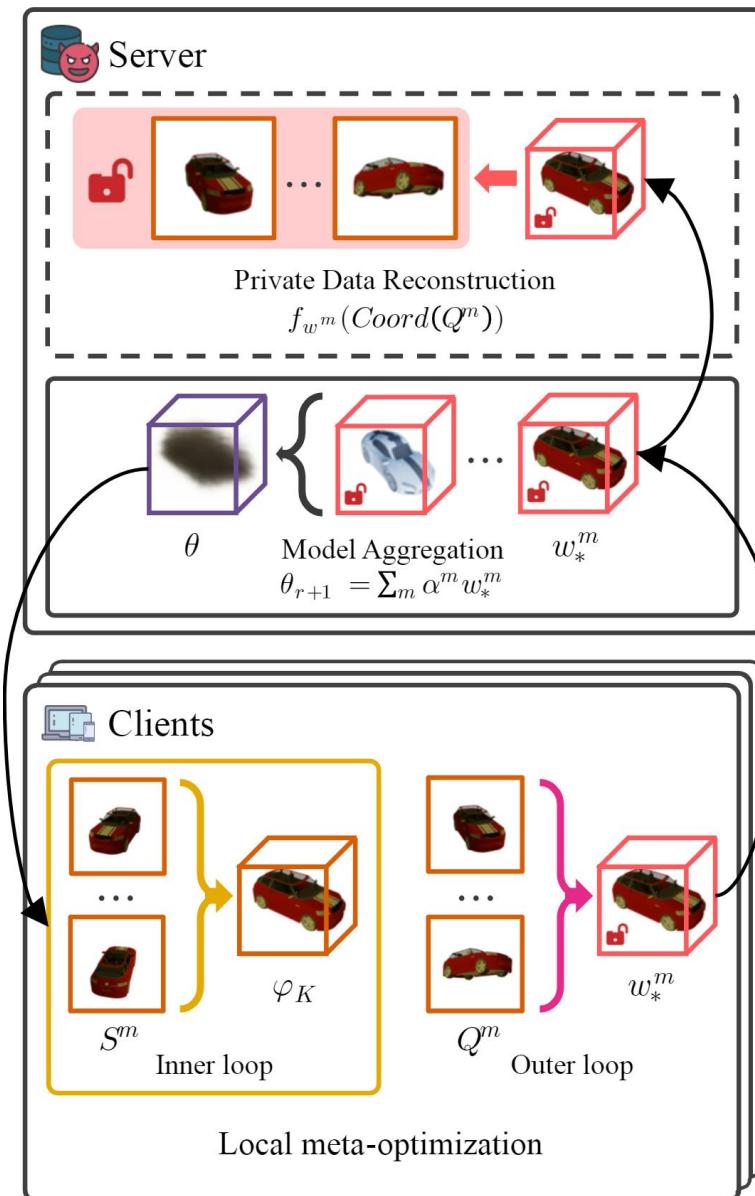
- Meta-learning requires various task data
- However, each client only has data from one car
- \Rightarrow *Federated Meta-Learning (FML)*
 - Multiple clients collaborate
 - Train a global meta-learner
 - Without sharing raw data



Motivation – Privacy Leakage in FML for NFs

Causes

1. Each client only has a single task
 - e.g., car, face, body, ...
 - the **meta-learner functions as a neural field**
(meta-optimization == 2nd-order optimization)
2. Neural fields inherently encapsulate the data
 - **shared meta-learner can be exploited to infer data**,
which violate the client's privacy



Motivation

*We propose
a novel **Federated Meta-Learning** approach
for **Neural Fields**
that **prevents privacy leakage**,
called **FedMeNF***

Method	Local	Federated Meta-Learning	Ours
Fast optimization	✗	✓	✓
Few-shot adaptation	✗	✓	✓
Privacy preservation	✓	✗	✓

Approach – Privacy Metric

- We need a quantitative metric for “How well did the server reconstruct the client’s private data?”
- **Peak Signal-to-Noise Ratio ($PSNR$)**
 - standard image quality metric in reconstruction & novel view synthesis
 - higher $PSNR$ \Rightarrow reconstructed image is closer to ground truth
- $PSNR_p$
 - Ground-truth (GT): client’s private image
 - Generated image: server-side reconstruction via shared meta-learner
 - higher $PSNR_p$ \Rightarrow server-reconstructed image is closer to client’s private image

Approach – Privacy Metric

- $PSNR_p = 10 \log_{10} \frac{R}{L(w, Q^m)}$
 - $L(w, Q^m)$: MSE loss of the meta-learner on the client's local data
 - **smaller $L(w, Q^m)$ \Rightarrow larger $PSNR_p$ \Rightarrow stronger privacy leakage**
- $\Delta L_{i+1} = L(w_{i+1}, B_Q) - L(w_i, B_Q)$
 - change in MSE loss \Rightarrow change in $PSNR_p$
- The first-order approximation of ΔL_{i+1}

$$\Delta L_{i+1} \approx -\lambda_o \cdot \left(\nabla_{w_i} L(w_i, B_Q) \right)^2 = -\lambda_o \cdot (g_K)^2 \leq 0$$

- Always $\leq 0 \Rightarrow$ MSE loss $\downarrow \Rightarrow PSNR_p \uparrow$ each outer step

Approach – Privacy-Preserving Loss Function

- $\Delta L_{i+1} \approx -\lambda_o \cdot (\nabla_{w_i} L(w_i, B_Q))^2 = -\lambda_o \cdot (g_K)^2 \leq 0$
- We define a privacy-preserving loss function that constrains the magnitude of g_K

$$L_{pp}(w_i, \varphi_K, B_Q) = L(\varphi_K, B_Q) - \gamma \cdot L(w_i, B_Q)$$

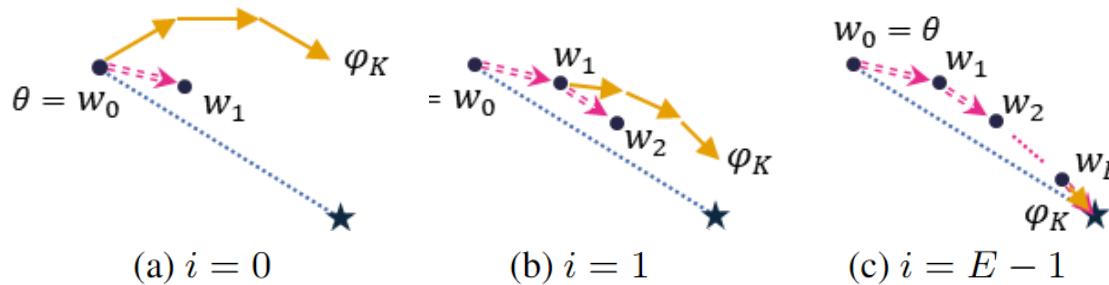
- γ is a regularization coefficient that determines the portion of g_K
- The first-order approximation of ΔL_{i+1} with L_{pp}

$$\Delta L_{i+1} \approx -\lambda_o (1 - \gamma) (g_K)^2 \leq 0$$

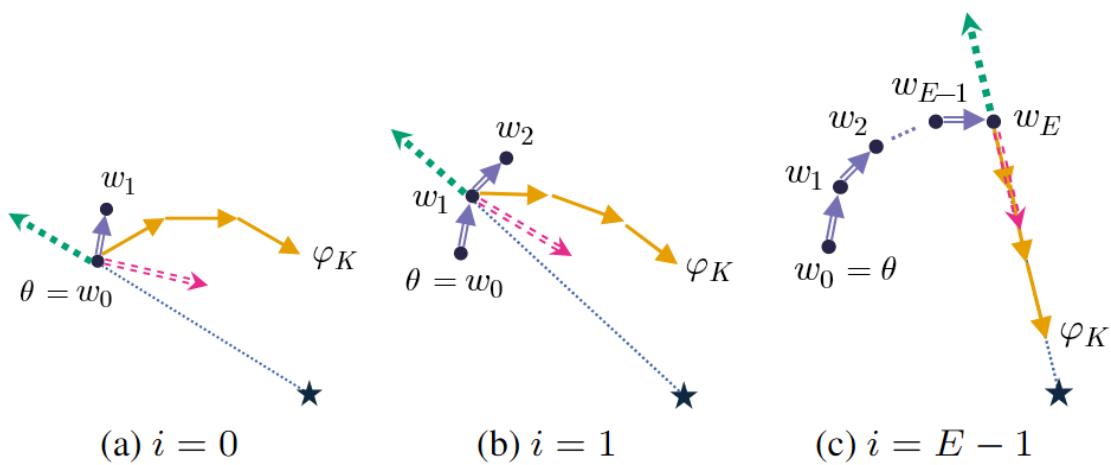
- Setting γ closer to 1 $\Rightarrow \Delta L_{i+1}$ closer to 0 \Rightarrow **keep the rise in $PSNR_p$**

Approach – Privacy-Preserving Loss Function

- Existing Meta-optimization: memorizes the training data



- Privacy-Preserving Meta-optimization: avoids memorizing the data & learns only the learning procedure



- local meta-learner
- ★ optimal neural field
- E : # of outer loop steps
- i : outer loop step
- $\Rightarrow \nabla_{w_i} L(\varphi_K, B_Q)$
- $\dots \Rightarrow -\gamma \nabla_{w_i} L(w_i, B_Q)$
- $\rightarrow \nabla_{\varphi_k} L(\varphi_k, B_k)$
- $\Rightarrow \nabla_{w_i} L_{pp}(w_i, \varphi_K, B_Q)$

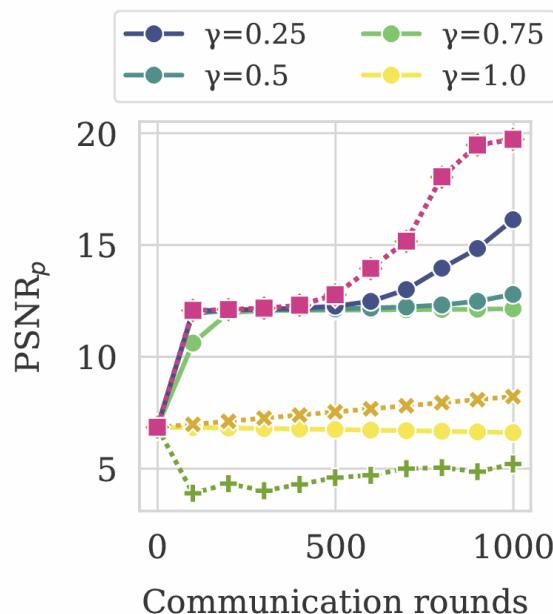
Experiments - Settings

- Baselines
 - Federated Meta-Learning = Federated Learning + Meta-Learning
 - Federated Learning: FedAvg, FedProx, Scaffold, FedNova, FedExP, and FedACG
 - Meta-Learning: MAML, FOMAML, Reptile, and meta-NSGD
- Datasets

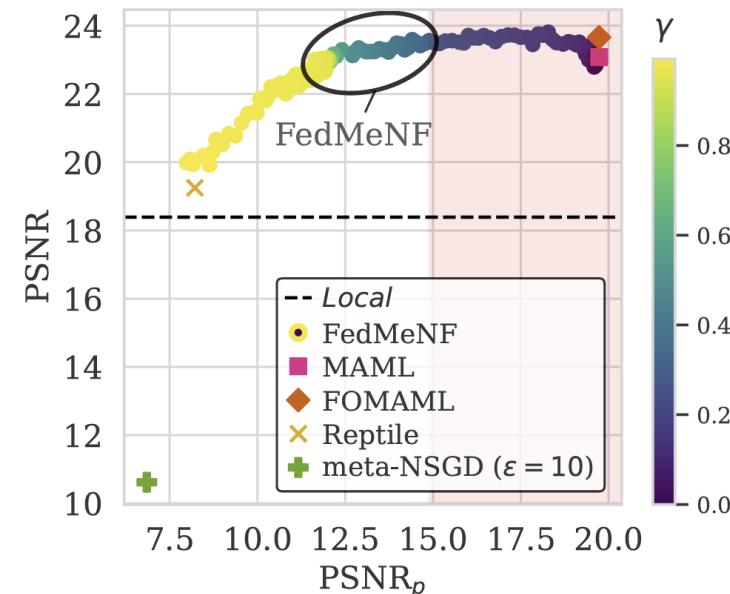
Modality	Dataset	Scenario
3D (NeRF)	ShapeNet	3D Car
	FaceScape	3D Face
Image	PetFace	Cat image
Video	GoldDB	Golf-swing video

Experiments – Privacy-Performance Trade-off

- Our FedMeNF establishes an efficient frontier that balances privacy protection and reconstruction performance



(a) PSNR_p / Rounds



(b) PSNR / PSNR_p

Experiments – Privacy-Performance Trade-off

- [Left] Reconstruction results of the **client's private image on the server**: (b) using MAML and (c) using FedMeNF
- [Right] Reconstruction results of a **new private image on the client**: (e) using MAML and (f) using FedMeNF

(a) GT (PSNR_p)



(b) MAML (17.33)

(c) FedMeNF (**5.84**)

(d) GT (PSNR)

(e) MAML (**35.74**)

(f) FedMeNF (35.16)

- [Upper] Reconstruction results of the **client's private video on the server**: (a) using MAML and (b) using FedMeNF
- [Lower] Reconstruction results of a **new private video on the client**: (c) using MAML and (d) using FedMeNF

(a) MAML ($\text{PSNR}_p = 23.43$)

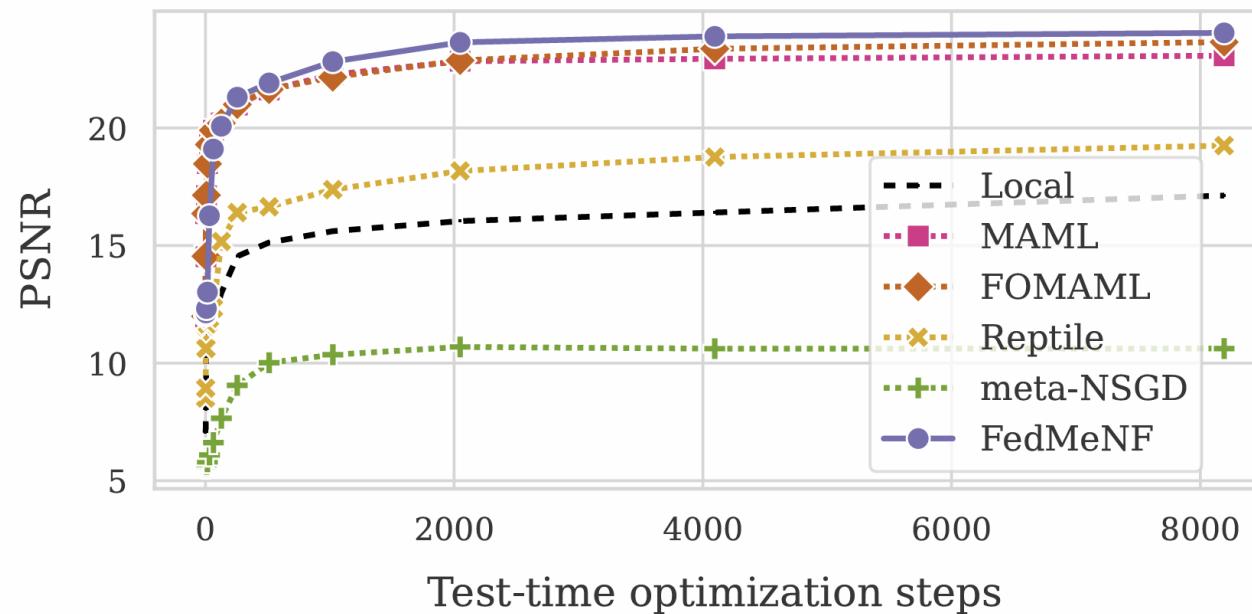
(b) FedMeNF ($\text{PSNR}_p = \underline{\underline{8.38}}$)

(c) MAML ($\text{PSNR} = \underline{\underline{29.65}}$)

(d) FedMeNF ($\text{PSNR} = 29.15$)

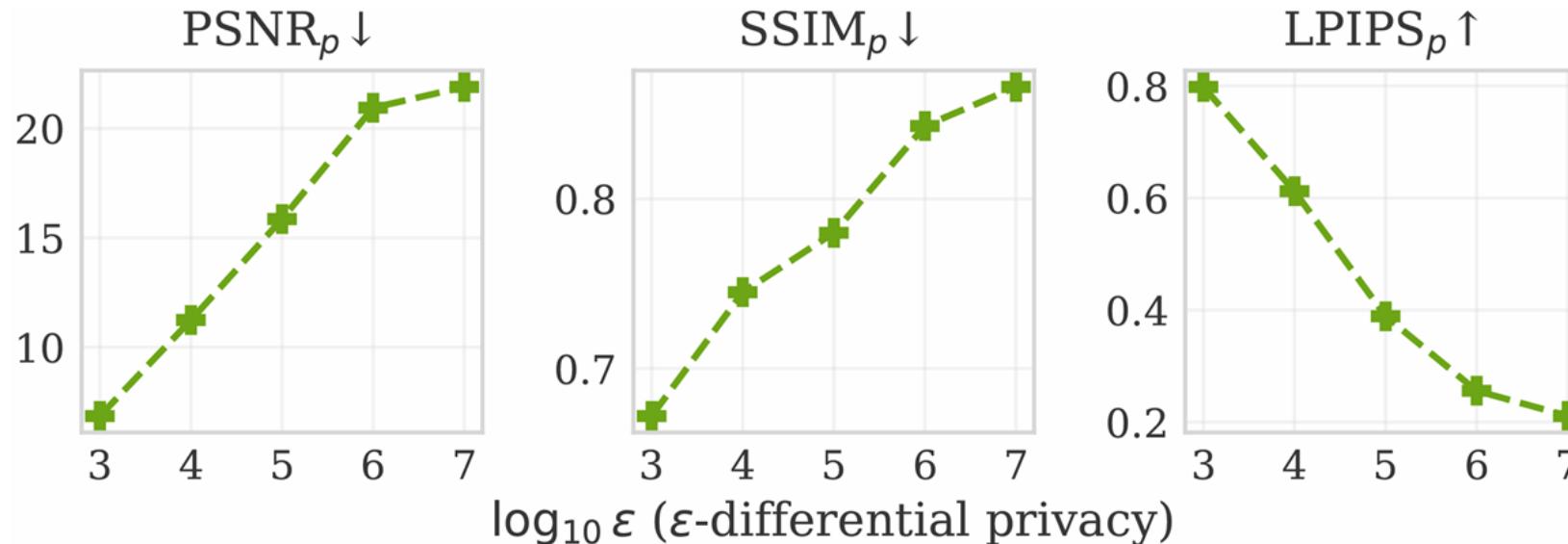
Experiments – Test-Time Optimization

- Competitive optimization speed and reconstruction quality



Experiments – Correlation between ϵ and Privacy Metrics

- We examine the correlation between the privacy metrics and ϵ of the differential privacy framework using meta-NSGD.
- The privacy metrics degrade as ϵ increases, supporting their generalizability as a measure of privacy leakage.



Experiments – Qualitative Results

- Competitive optimization speed and reconstruction quality

(a) GT (PSNR)

(b) Local (14.97)

(c) MAML (21.22)

(d) FOMAML (21.44)

(e) Reptile (17.57)

(f) FedMeNF (**21.92**)

(a) GT (PSNR)

(b) Local (32.69)

(c) MAML (33.17)

(d) FOMAML (33.26)

(e) Reptile (32.72)

(f) FedMeNF (**33.54**)

Summary

- The **first study** to address **federated learning for neural fields on private data**
- We **theoretically and empirically show how privacy leakage occurs** during the federated meta-learning for neural fields
- We propose FedMeNF that **preserves the privacy of local data with minimal impact on optimization speed and reconstruction quality**
- **Comprehensive experiments** on FedMeNF across various data modalities, private data sizes, and levels of data diversity, **outperforming baseline methods**