

WINS: Winograd Structured Pruning for Fast Winograd Convolution

Cheonjun Park¹, Hyunjae Oh², Mincheol Park³, Hyunchan Moon⁴, Minsik Kim²,
Suhyun Kim⁵, Myung Kuk Yoon⁶, Won Woo Ro²

¹Hankuk University of Foreign Studies, ²Yonsei University, ³SAIT (Samsung),

⁴LG Electronics, ⁵Kyung Hee University, ⁶Ewha Womans University

1. Background : Winograd Convolution

- **Efficient Winograd convolution on GPU**

- **Winograd Conv. Problem 1** : Low computational intensity
- **Winograd Conv. Problem 2** : Frequent memory access overhead of EWMM
- GPU convert and process Winograd convolution's EWMM and channel-wise summation to BGEMM operations.
- BGEMM maintains a structured form to maximize data reuse on the GPU.
- EC2B (conversion from EWMM and Channel-wise summation to BGEMM).

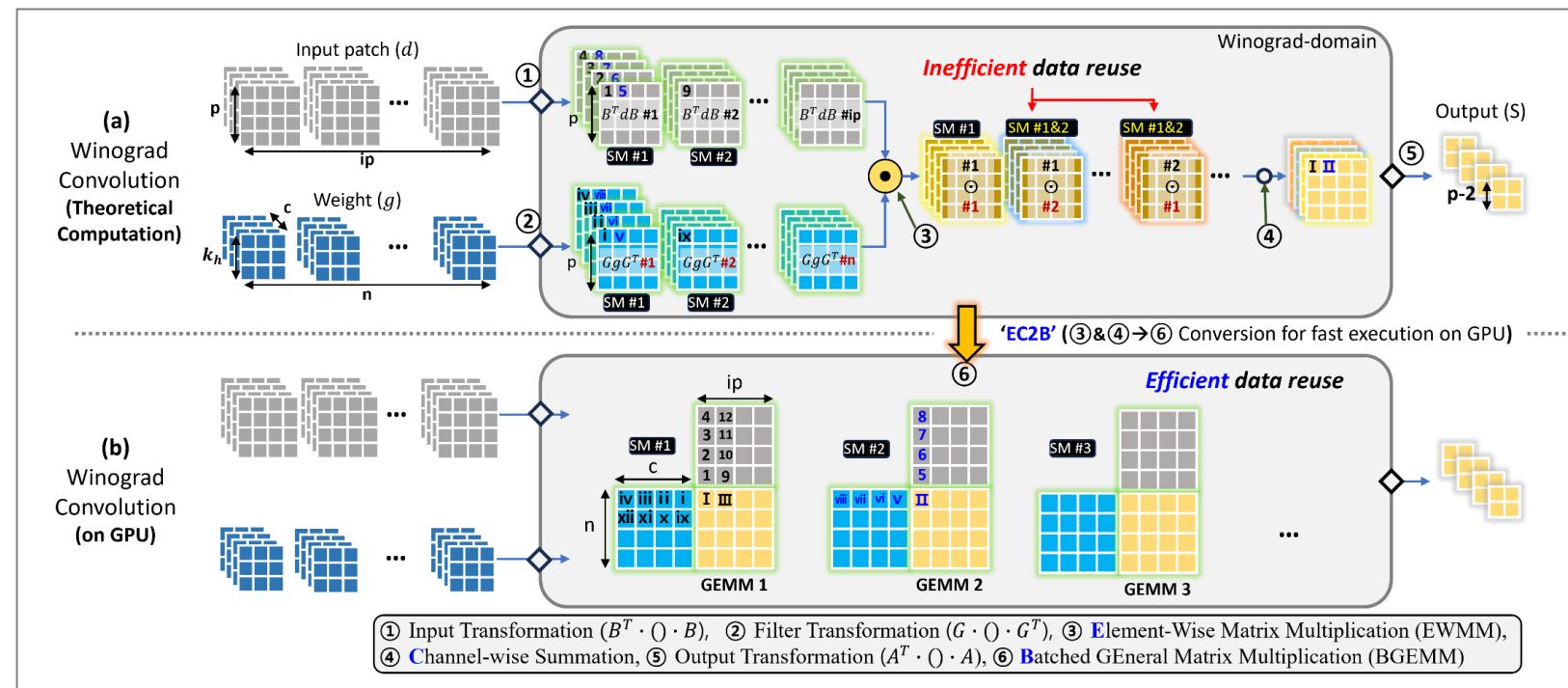


Fig.1 Overview of Winograd convolution: Conversion from (a) theoretical computation to (b) GPU-accelerated execution.

2. Related Work

■ Filter Pruning (FP)

- Filter pruning removes rows (filter pruning) in converted weight matrix using im2col [3] for multiple 3D filter tensors.
- Spatial-Winograd pruning is the appliance of filter pruning on Winograd convolution, the pruning unit size is a 3D filter size.

■ Winograd Weight Pruning (WWP)

- WWP removes redundant values of Winograd-transformed matrices in a unit of an element to reduce the matrix size of Winograd convolution.
- Sparse Winograd CNN introduces the first attempt at pruning and re-training method in the Winograd domain.

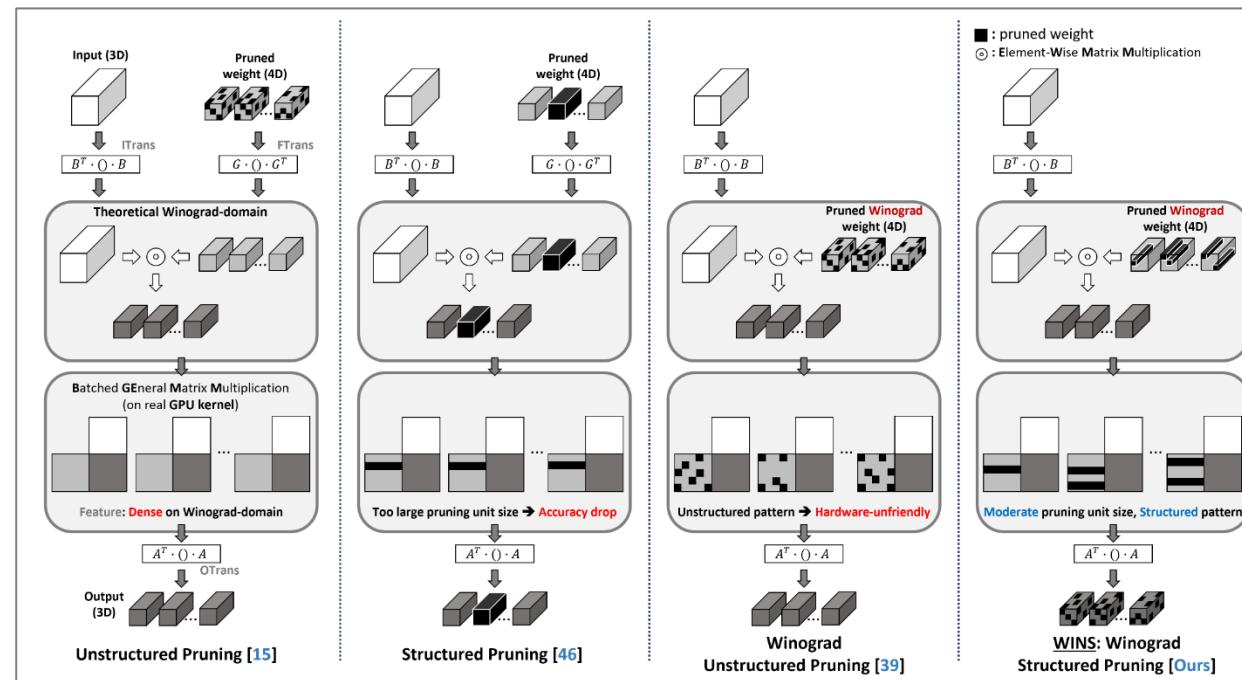


Fig.2 Overview of previous pruning methods and the proposed WINS for Winograd convolution.

3. Proposed Method: WINS

- **Winograd Structured Pruning (WINS)**

- (a) Motivation 1: Large pruning unit size problem of FP
- (b) Motivation 2: Irregular data problem of WWP
- WINS removes weight parameters vector by vector from each sub-GEMM weight matrix.
- WINS's pruning unit size ($R^{1 \times c}$) of the WINS is 16 (p^2) times smaller than that ($p^2 \times R^{1 \times c}$) of the filter pruning.

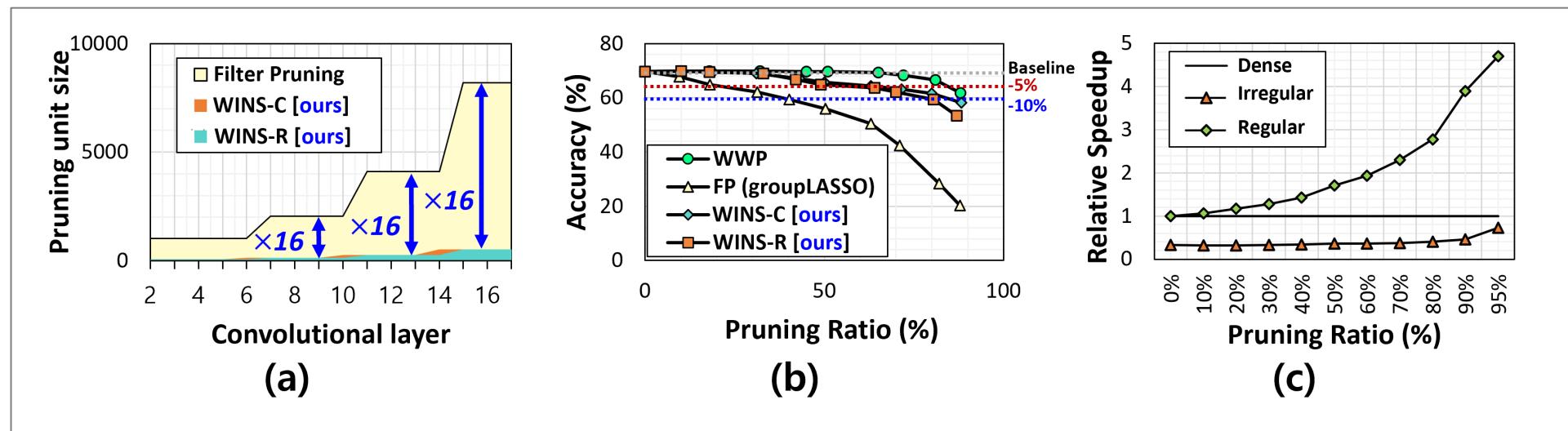


Fig.3 (a) Comparison of pruning unit size on ResNet-18. (b) Comparison of accuracy with respect to pruning ratio for four pruning methods of ResNet-18 on ImageNet. The models were fine-tuned for one epoch. (c) Comparison of GEMM speedups by pruning between irregular data (cuSPARSE) and regular data (cuBLAS). The speedups are measured on the 6th convolution layer of VGG-16.

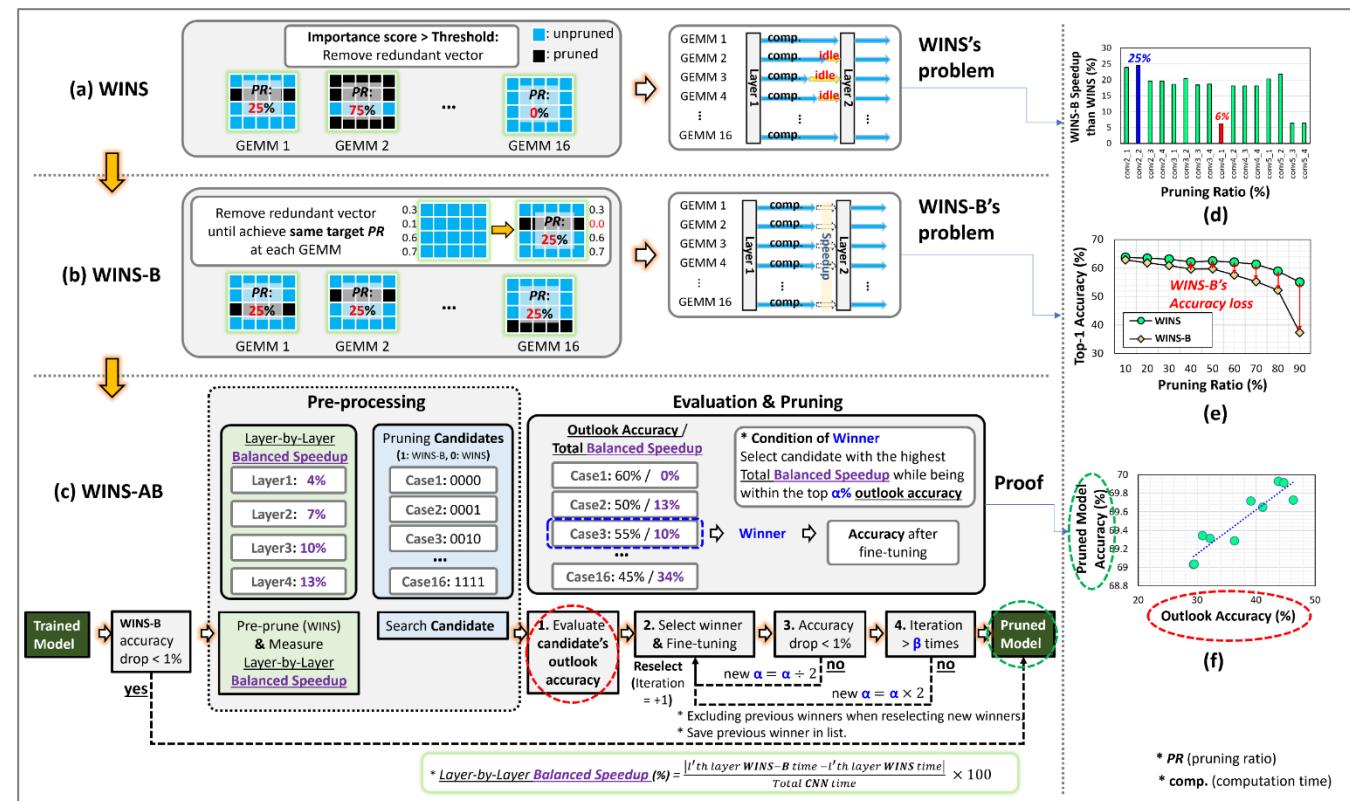
4. Enhanced Method 1: WINS-B (Balanced)

- Motivation: **Imbalance overhead problem of WINS.**

- WINS exhibits an imbalanced characteristic attributed to the different PR in each of the 16 (p2) sub-GEMMs.
- This imbalance leads to an under-throughput on GPUs, as each sub-GEMM is assigned to an SM for independent execution.

- Method: **WINS-B ensures that all sub-GEMMs have equal PR and employ a specific order for pruning to achieve this equal PR across all sub-GEMMs.**

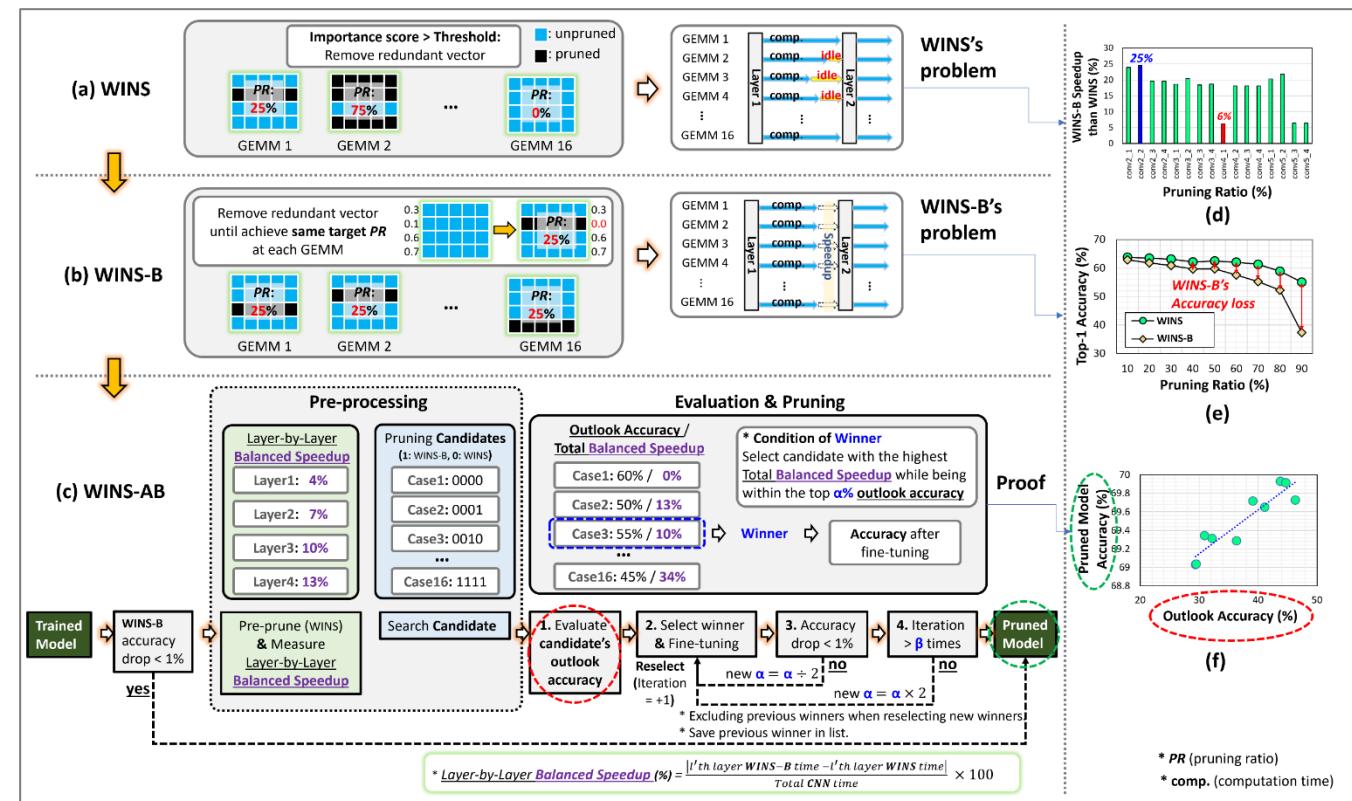
Fig.4 Overview of the three proposed methods: (a) WINS, (b) WINS-B, and (c) WINS-AB. ResNet-18 on ImageNet. (d) Comparison of performance improvements in layers obtained from applying balancing on WINS. (e) Comparison of Top-1 accuracy between WINS and WINS-B. The fine-tuning epoch is one. (f) Correlation of outlook accuracy (100 iterations) and fine-tuning accuracy (40 epochs).



5. Enhanced Method 2: WINS-AB (Adaptive)

- **Motivation: Accuracy drop of WINS-B.**
 - The accuracy of WINS-B exhibits a disadvantage compared to relying on WINS alone.
- **Method: WINS-AB introduce an adaptive framework that applies WINS-B or WINS selectively, simultaneously considering evaluation accuracy and speedup due to workload balance.**
 - [1] Pre-processing -> [2] Evaluation & Pruning (Outlook Accuracy)

Fig.4 Overview of the three proposed methods: (a) WINS, (b) WINS-B, and (c) WINS-AB. ResNet-18 on ImageNet. (d) Comparison of performance improvements in layers obtained from applying balancing on WINS. (e) Comparison of Top-1 accuracy between WINS and WINS-B. The fine-tuning epoch is one. (f) Correlation of outlook accuracy (100 iterations) and fine-tuning accuracy (40 epochs).



6. Experiments

- In ResNet-18 and VGG-16, within 1.5% accuracy drop, WINS-AB is $1.84\times$ and $1.27\times$ faster than FP.
- WINS-AB maintains a structural form, so WINS-AB is $2.01\times$ faster than Winograd convolution when PR is 84%.
- On ResNet-50, WINS-AB achieves 1.82% higher accuracy and has 1.47 times faster inference time, even with up to 15.5% more PR than Torque.

Table.1 Comparison with FP on ImageNet. The GEMM operation with the unpruned weight parameters of WINS-AB and input values is accelerated using customized CUTLASS API. This symbol (*) means `prune using BCBP at 1×1 convolution layer'. This symbol (#) means `no prune at 1×1 convolution layer'. GAP is the Top-1 accuracy difference between baseline and pruned model.

Method	Pruning Ratio (%)	Pruned FLOPs (%)	Top-1 Accuracy (%)			Inference time	Speed up
			Baseline	Pruned	GAP		
ResNet-18 (baseline)	-	-	69.70	-	-	3.16ms	1.00 \times
UDSP [9]	20.0	-	69.76	69.48	-0.28	2.51ms	1.26 \times
SOSP [46]	39.1	-	69.80	69.60	-0.20	1.88ms	1.68 \times
WINS-AB [ours]	40.1	-	69.70	69.90	0.20	1.87ms	1.69 \times
FPGM [20]	41.8	-	70.20	68.40	-1.80	1.85ms	1.71 \times
PFP [35]	43.8	-	69.70	67.30	-2.40	1.83ms	1.73 \times
WHC [2]	-	41.8	69.80	68.50	-1.30	-	-
RLAL [8]	-	50.0	69.80	69.00	-0.80	-	-
WINS-AB [ours]	84.0	75.1	69.70	69.00	-0.70	1.12ms	2.82 \times
ResNet-50 (baseline)	-	-	76.10	-	-	12.53ms	1.00 \times
UDSP [9]	25.0	-	76.13	76.51	0.38	9.74ms	1.29 \times
ATO [59]	-	61.7	76.13	76.07	-0.06	-	-
APIB [13]	58.0	62.0	76.15	75.37	-0.78	6.06ms	2.07 \times
Torque [14]	64.5	-	76.07	74.58	-1.49	5.34ms	2.35 \times
WINS-AB* [ours]	80.0	69.5	76.10	76.43	0.33	3.61ms	3.47 \times
SqueezeNet-1.0 (baseline)	-	-	58.20	-	-	1.81ms	1.00 \times
ℓ_2 -norm [32]	9.7	-	58.20	55.30	-2.90	1.61ms	1.12 \times
WINS-AB [ours]	28.1	-	58.20	57.00	-1.20	1.48ms	1.23 \times
DenseNet-121 (baseline)	-	-	74.60	-	-	9.21ms	1.00 \times
C-SGD [16]	29.9	-	74.50	73.70	-0.80	8.10ms	1.14 \times
LWP [67]	35.2	-	74.60	72.80	-1.80	6.92ms	1.33 \times
WINS-AB [†] [ours]	85.0	-	74.60	74.20	-0.40	5.55ms	1.66 \times

Thank you