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1. Background : Winograd Convolution

= Efficient Winograd convolution on GPU
* Winograd Conv. Problem 1 : Low computational intensity
* Winograd Conv. Problem 2 : Frequent memory access overhead of EWMM
* GPU convert and process Winograd convolution’s EWMM and channel-wise summation to BGEMM operations.
« BGEMM maintains a structured form to maximize data reuse on the GPU.
e EC2B (conversion from EWMM and Channel-wise summation to BGEMM).
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Fig.1 Overview of Winograd convolution: Conversion from (a) theoretical computation to (b) GPU-accelerated execution.



2. Related Work

= Filter Pruning (FP)

* Filter pruning removes rows (filter pruning) in converted weight matrix using im2col [3] for multiple 3D filter tensors.
* Spatial-Winograd pruning is the appliance of filter pruning on Winograd convolution, the pruning unit size is a 3D filter

size.

= Winograd Weight Pruning

* WWP removes redundant values of Winograd-transformed matrices in a unit of an element to reduce the matrix size

(WwP)

of Winograd convolution.

* Sparse Winograd CNN introduces the first attempt at pruning and re-training method in the Winograd domain.
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Fig.2 Overview of previous pruning methods and the proposed WINS for Winograd convolution.




3. Proposed Method: WINS

= Winograd Structured Pruning (WINS)
* (a) Motivation 1: Large pruning unit size problem of FP
* (b) Motivation 2: Irregular data problem of WWP
* WINS removes weight parameters vector by vector from each sub-GEMM weight matrix.
* WINS’s pruning unit size (R**¢) of the WINS is 16 (p?) times smaller than that (p? x R'*¢) of the filter pruning.
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Fig.3 (a) Comparison of pruning unit size on ResNet-18. (b) Comparison of accuracy with respect to pruning
ratio for four pruning methods of ResNet-18 on ImageNet. The models were fine-tuned for one epoch. (c)
Comparison of GEMM speedups by pruning between irregular data (cuSPARSE) and regular data (cuBLAS).

The speedups are measured on the 6th convolution layer of VGG-16.



4. Enhanced Method 1: WINS-B (Balanced)

= Motivation: Imbalance overhead problem of WINS.
* WINS exhibits an imbalanced character istic attributed to the different PR in each of the 16 (p2) sub-GEMMs.
* This imbalance leads to an under-throughput on GPUs, as each sub-GEMM is assigned to an SM for
independent execution.

= Method: WINS-B ensures that all sub-GEMMs have equal PR and employ a specific order for pruning to achieve
this equal PR across all sub-GEMM:s.
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5. Enhanced Method 2: WINS-AB (Adaptive)

= Motivation: Accuracy drop of WINS-B.
* The accuracy of WINS-B exhibits a disadvantage compared to relying on WINS alone.

= Method: WINS-AB introduce an adaptive framework that applies WINS-B or WINS selectively, simultaneously
considering evaluation accuracy and speedup due to workload balance.

e [1] Pre-processing -> [2] Evaluation & Pruning (Outlook Accuracy)
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6. Experiments

In ResNet-18 and VGG-16, within 1.5% accuracy drop, WINS-AB is 1.84x and 1.27 x faster than FP.
WINS-AB maintains a structural form, so WINS-AB is 2.01x faster than Winograd convolution when PR is 84%.

On ResNet-50, WINS-AB achieves 1.82% higher accuracy and has 1.47 times faster inference time, even with up
t015.5% more PR than Torque.

Method Pruning Pruned Top-1 Accuracy (%) Inference  Speed
Ratio (%) FLOPs (%) Baseline Pruned GAP time up
ResNet-18 (baseline) - - 69.70 - - 3.16ms  1.00x
UDSP [9] 20.0 - 69.76 69.48 -0.28 2.51lms 1.26x
Table.1 Comparison with FP on SOSP [46] 39.1 - 69.80  69.60 -0.20 1.88ms  1.68x
: : WINS-AB [ours] 40.1 - 69.70 69.90 0.20 1.87ms  1.69x
|mageNet' The GEMM Operatlon Wlth FPGM [20] 41.8 - 70.20 6840 -1.80 1.85ms 1.71x
the unpruned weight parameters of PEP [35) 438 - 69.70 6730 -240 1.83ms 1.73x
Wl NS_AB and |nput Values |S WHC [2] - 41.8 69.80 68.50 -1.30 - -
. . RLAL [8] - 50.0 69.80 69.00 -0.80 - -
accelerated using customized WINS-AB [ours] 84.0 75.1 6970  69.00 -070 1.12ms 2.82x
CUTLASS API. This sym bol (x) means ResNet-50 (baseline) - - 76.10 - - 12.53ms 1.00x
N . : UDSP [9 25.0 - 76.13 76.51 0.38 9.74ms 1.29x
prune using BCBP at 1x1 convolution s [5[9} ’ o ron e S T i
layer'. This symbol () means no APIB [13] 58.0 62.0 76.15 7537 078 6.06ms  2.07x
. WINS-AB* [ours] 80.0 69.5 76.10 76.43 0.33 3.6lms  3.47x
the TOp'1 accuracy dlfference between SqueezeNet-1.0 (baseline) - - 58.20 - - 1.81ms 1.00x
baseline and pruned model. {o-norm [32] 9.7 - 5820 5530 -290 1.6lms 1.12x
WINS-AB [ours] 28.1 - 58.20 57.00 -1.20 1.48ms 1.23x
DenseNet-121 (baseline) - - 74.60 - - 9.21ms 1.00x
C-SGD [16] 299 - 74.50 73.70  -0.80 8.10ms 1.14x%
LWP [67] 35.2 - 74.60 72.80 -1.80 6.92ms 1.33x

WINS-AB* [ours] 85.0 - 74.60 7420 -040 5.55ms  1.66x
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