
SGAD: Semantic and Geometric-aware
Descriptor for Local Feature Matching

Xiangzeng Liu1∗, Chi Wang1∗†, Guanglu Shi1, Xiaodong Zhang1, Qiguang Miao1†, Miao Fan2

1Xidian University 2Navinfo Europe B.V



Outline

1. Introduction

2. Method

3. Experiments

4. Discussion

5. Conclusion



Introduction



Why Local Feature Matching Matters

• Foundational for SfM, SLAM, visual localization, image retrieval, and many multi-view
geometry tasks.

• Accurate pixel correspondences remain challenging under scale, viewpoint, illumination, and
repetition changes.

• Achieving both high accuracy and high efficiency is essential for real-time, large-scale
deployment.



Pixel-wise Matching Challenges

• Dense comparisons across entire images waste computation on irrelevant pixels.
• Highly sensitive to illumination changes, wide baselines, and repetitive structures, leading to

unstable correspondences.
• Scaling to high-resolution or multi-image settings quickly becomes impractical.



Opportunities for Area-to-Point Matching

1

• Segmenting overlapping
regions first narrows the
search space for point
matchers.

• Region-level semantics deliver
context that complements
low-level descriptors.

• Motivates learning compact,
reusable area representations.

1Illustration adapted from MESA [9].



Limitations of MESA

(a) MESA (b) SGAD

• Inefficiency: pixel-level activity maps and graph matching dominate runtime.
• Inconsistency: merged or mismatched regions reduce subsequent point-matching accuracy.
• Motivates a descriptor-driven, single-pass alternative.



Problem Statement

Core Question

Can we learn discriminative, geometry-aware area descriptors and accomplish
global-consistent matching in a single forward pass?

• Avoid the efficiency bottlenecks of pixel-wise comparisons and graph optimization.
• Provide reliable region priors that strengthen downstream point matchers.



Overview and Contributions

SGAD in a Nutshell
Area descriptors first: combine semantic cues and geometry to produce highly discriminative
descriptors that a lightweight matcher can align efficiently.

Key Contributions
• Propose SGAD, an area descriptor network with alternating attentions and geometric

positional encoding, enabling single-pass region matching.
• Introduce a dual-task supervision (classification + ranking) to jointly learn absolute and

relative similarity.
• Design a Hierarchical Containment Redundancy Filter (HCRF) to prune overlapping

areas; deliver consistent gains across matchers while being up to 60× faster than MESA.



Method



SGAD Overview
d) Hierarchical Containment Redundancy Filter (HCRF)

c) Area Descriptor Matcher (ADM)b) Semantic and Geometric-aware Descriptor Network (SGAD)
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• SAM segments salient regions; DINOv2 provides semantic descriptors.
• Geometric positional encoding injects cross-region relations; alternating self/cross attention

fuses intra- and inter-image context.
• Dual-softmax + MNN yield matches; HCRF removes redundant areas before local point

matching.



Semantic and Geometric Area Representation

Semantic Features
• SAM generates instance masks; we take bounding boxes as region proposals.
• A frozen DINOv2-L backbone extracts token features, average-pooled into area vectors F i.

Geometric Positional Encoding
• Compute pairwise distances and angles between region centers to capture global relations.
• Feed statistics through an MLP and add to semantic features: F̂ i = F i + PEi.
• Mitigates confusion between visually similar but spatially distinct regions.



Alternating Attention and Descriptor Matching

• Alternating attention: each layer performs intra-image self-attention followed by cross-image
attention; Ntr = 4 layers output descriptors Di

A, Dj
B .

• Matching probabilities: temperature-scaled dot products feed dual-softmax to obtain
confidence matrix Ppr.

• Mutual nearest neighbor: thresholding plus MNN enforce one-to-one matches and discard
outliers.



Hierarchical Containment Redundancy Filter

HCRF

(a) (b)

• Build a containment graph with overlap and coverage thresholds to capture nested regions.
• Depth-first traversal decides whether to keep parents or children, removing redundant overlaps.
• Cuts downstream computations while preserving informative regions for point matching.



Dual-Task Supervision

Label Construction
• Use camera poses and depth to project regions across views; IoU provides ground-truth scores

Pgt.
• Threshold IoU to derive binary labels Pcls

gt for the classification branch.

Loss Functions
• Classification: focal loss on Ppr vs. Pcls

gt balances easy/hard and pos/neg pairs.
• Ranking: ListMLE ensures predicted scores respect ground-truth ordering for each source

region.
• Joint objective L = Lcls + Lrank captures both absolute and relative similarity cues.



Experiments



Experimental Setup

• Datasets: ScanNet1500 (indoor), MegaDepth1500 (outdoor), HPatches (homography).
• Training: separate indoor/outdoor models following LoFTR splits; AdamW, lr 1 × 10−4,

batch size 64, trained 2 days on one RTX A6000.
• Backbones: DINOv2-L frozen for semantics; SAM regions generated offline; Ntr = 4

transformer layers.
• Metrics: Area AUC, Homography AUC@3/5/10, Pose AUC@5◦/10◦/20◦, runtime.



Area Matching Accuracy

Dataset AUC@0.2 AUC@0.3 AUC@0.4 AUC@0.5
ScanNet1500 95.46 96.18 96.78 97.28
MegaDepth1500 97.39 97.81 98.02 98.18

Table: SGAD maintains ≥95% area-matching AUC on both indoor and outdoor benchmarks.

• Unlike MESA/DMESA, SGAD outputs a full confidence matrix, simplifying evaluation and
downstream integration.

• High-quality area correspondences provide strong priors for fine-grained point matchers.



Pose Estimation Improvements (ScanNet)

Pose estimation AUC ScanNet1500 benchmark
1296 × 968 880 × 640 640 × 480

AUC@5◦ AUC@10◦ AUC@20◦ AUC@5◦ AUC@10◦ AUC@20◦ AUC@5◦ AUC@10◦ AUC@20◦

TopicFM [4] AAAI’23 19.14 36.55 52.68 19.23 36.48 52.49 19.45 36.57 52.75
TopicFM+ [5] TIP’24 20.26 37.83 54.06 19.73 37.19 53.64 20.00 37.79 53.98
SP[1]+SG[6] CVPR’19 22.62 42.89 61.44 23.37 43.68 62.76 21.73 41.64 60.41
SGAD+SPSG 25.74+13.79% 45.95+7.13% 63.77+3.79% 25.17+7.70% 45.46+4.08% 63.48+1.15% 24.31+11.87% 44.64+7.20% 62.92+4.15%

LoFTR [7] CVPR’21 8.91 18.31 29.56 20.01 39.50 57.70 28.44 50.43 68.80
SGAD+LoFTR 29.69+233.22% 51.50+181.27% 69.58+135.39% 28.79+43.88% 50.68+28.30% 68.92+19.45% 28.69+0.88% 51.18+1.49% 69.40+0.87%

DKM [2] CVPR’23 24.16 44.03 61.34 29.30 51.02 68.51 30.17 51.80 69.52
MESA [9]+DKM CVPR’24 30.07+24.46% 51.57+17.12% 68.98+12.46% 30.76+4.98% 52.59+3.08% 69.74+1.80% 30.85+2.25% 52.57+1.49% 69.97+0.65%
DMESA [8]+DKM ArXiv’24 28.89+19.58% 49.34+12.06% 66.28+8.05% 30.61+4.47% 51.95+1.82% 69.14+0.92% 30.90+2.42% 52.31+0.98% 69.86+0.49%
SGAD+DKM 31.63+30.92% 52.98+20.33% 69.93+14.00% 31.85+8.70% 53.11+4.10% 70.12+2.35% 31.65+4.91% 53.12+2.55% 70.69+1.68%
SGAD†+DKM 31.51+30.42% 52.87+20.08% 69.87+13.91% 31.76+8.40% 53.02+3.92% 70.05+2.25% 31.49+4.38% 52.92+2.16% 70.55+1.48%

ROMA [3] CVPR’24 31.51 53.44 71.10 31.99 53.90 71.39 31.80 53.92 71.29
SGAD+ROMA 33.84+7.39% 55.37+3.61% 72.23+1.59% 33.61+5.06% 55.19+2.39% 72.11+1.01% 33.49+5.31% 55.14+2.26% 72.16+1.22%

Table: Relative pose estimation on ScanNet1500. †: model trained on MegaDepth.



Pose Estimation Improvements (MegaDepth)

Pose estimation AUC MegaDepth1500 benchmark
1200 × 1200 832 × 832 640 × 640

AUC@5◦ AUC@10◦ AUC@20◦ AUC@5◦ AUC@10◦ AUC@20◦ AUC@5◦ AUC@10◦ AUC@20◦

SP[1]+SG[6] CVPR’19 56.83 71.90 83.03 53.32 68.75 80.66 47.28 63.57 76.50
TopicFM [4] AAAI’23 52.68 69.44 81.42 49.36 67.28 80.01 46.53 64.15 77.73
TopicFM+ [5] TIP’24 56.52 71.93 82.87 55.03 70.18 81.49 49.53 65.31 77.49
LoFTR [7] CVPR’21 62.37 76.34 85.96 60.64 74.82 84.83 56.42 71.80 82.65
SGAD+LoFTR 65.98+5.79% 78.77+3.18% 87.13+1.36% 65.16+7.45% 77.94+4.17% 86.62+2.11% 63.94+13.33% 76.90+7.10% 85.78+3.79%

DKM [2] CVPR’23 61.11 74.63 84.02 62.42 75.88 85.11 63.26 76.13 84.97
MESA [9]+DKM CVPR’24 62.31+1.96% 76.11+1.98% 85.56+1.83% 62.68+0.42% 75.96+0.11% 85.35+0.28% 63.02−0.38% 76.31+0.24% 85.60+0.74%
DMESA [8]+DKM ArXiv’24 63.52+3.94% 76.29+2.22% 85.31+1.54% 64.02+2.56% 76.69+1.07% 85.54+0.51% 65.24+3.13% 77.98+2.43% 86.55+1.86%
SGAD+DKM 66.40+8.66% 78.38+5.02% 86.51+2.96% 66.49+6.52% 78.80+3.85% 87.23+2.49% 66.75+5.52% 78.80+3.51% 87.13+2.54%
SGAD†+DKM 66.04+8.08% 78.07+4.61% 86.50+2.95% 65.97+5.69% 78.35+3.26% 86.88+2.08% 66.73+5.49% 78.39+2.97% 86.67+2.00%

ROMA [3] CVPR’24 65.68 78.15 86.68 65.91 78.41 86.95 65.29 78.01 86.68
SGAD+ROMA 67.85+3.30% 79.87+2.20% 88.02+1.55% 68.34+3.69% 80.27+2.37% 88.34+1.57% 67.94+4.06% 80.09+2.67% 88.40+1.98%

Table: Relative pose estimation on MegaDepth1500. †: model trained on ScanNet.



Runtime Comparison

Single Forward-Pass Advantage
Matching relies on descriptor dot products and MNN filtering, which are fully parallelizable and
eliminate graph-optimization bottlenecks.

LoFTR DKM MESA+LoFTR DMESA+LoFTR SGAD+LoFTR
MegaDepth 0.38 1.51 60.23 1.84 0.82
ScanNet 0.28 0.72 33.44 1.38 0.67

Table: Average inference time (seconds) on an RTX A6000. SAM preprocessing excluded.

• SGAD+LoFTR is ∼73× faster than MESA+LoFTR and ∼2.2× faster than DMESA+LoFTR.
• Semi-dense SGAD+LoFTR even surpasses dense DKM in both speed and accuracy.



Qualitative Comparisons
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• SGAD preserves more correct matches under large viewpoint changes and low-texture
conditions.

• Rotation and translation errors are consistently lower than MESA and DMESA.



Ablation Study

DINOv2 Attention PE Lcls Lrank LT riplet AUC@0.2 AUC@0.3
1) 3 7 7 3 3 7 79.74 82.62
2) 3 3 7 3 3 7 92.52 94.23
3) 3 3 3 3 3 7 95.46 96.18
4) 3 3 3 3 7 7 94.82 95.61
5) 3 3 3 7 7 3 91.81 93.55

Table: Ablation on ScanNet1500 validating each component of SGAD.

• Geometric encoding and alternating attention drive descriptor discriminability.
• Ranking supervision boosts relative ordering beyond pure classification.



HCRF Sensitivity

• Coverage in [0.4, 0.5] and contain threshold in [0.85, 0.9] work robustly across datasets.
• Gains of +6.79 and +7.65 AUC@5◦ over LoFTR on MegaDepth and ScanNet, respectively.



Discussion



Comparison to MESA

• Matching strategy: SGAD replaces pixel-level activity maps and graph optimization with
descriptor matching, drastically cutting complexity.

• Descriptor strength: SGAD aggregates global context, positional cues, and cross-image
relationships, producing stable area correspondences without graph optimization.

• Scalability: training and inference are GPU-friendly and combine seamlessly with existing
point matchers.

Takeaway
Descriptor-centric region matching offers a lightweight, scalable alternative to previous A2PM
pipelines.



Limitations and Future Work

• Average pooling into compact vectors may still struggle with extreme geometric distortions—
richer shape modeling could help.

• HCRF reduces redundancy, yet partial overlaps remain; exploring end-to-end region selection is
promising.

• Current design cascades with point matchers; joint training or adaptive scheduling could
further improve performance.



Conclusion



Conclusion

• SGAD delivers single-pass, parallel area matching that balances accuracy and efficiency.
• Dual-task supervision and HCRF strengthen match quality and downstream pose estimation.
• Verified gains across LoFTR, DKM, ROMA, establishing new state of the art on multiple

benchmarks.

Resources
Project page: https://mr-chiwang.github.io/SGAD/

https://mr-chiwang.github.io/SGAD/
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Thank You

Questions and discussion are welcome.
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