

西安电子科技大学
XIDIAN UNIVERSITY

SGAD: Semantic and Geometric-aware Descriptor for Local Feature Matching

Xiangzeng Liu^{1*}, Chi Wang^{1*†}, Guanglu Shi¹, Xiaodong Zhang¹, Qiguang Miao^{1†}, Miao Fan²

¹Xidian University ²Navinfo Europe B.V

Outline

1. Introduction

2. Method

3. Experiments

4. Discussion

5. Conclusion

Introduction

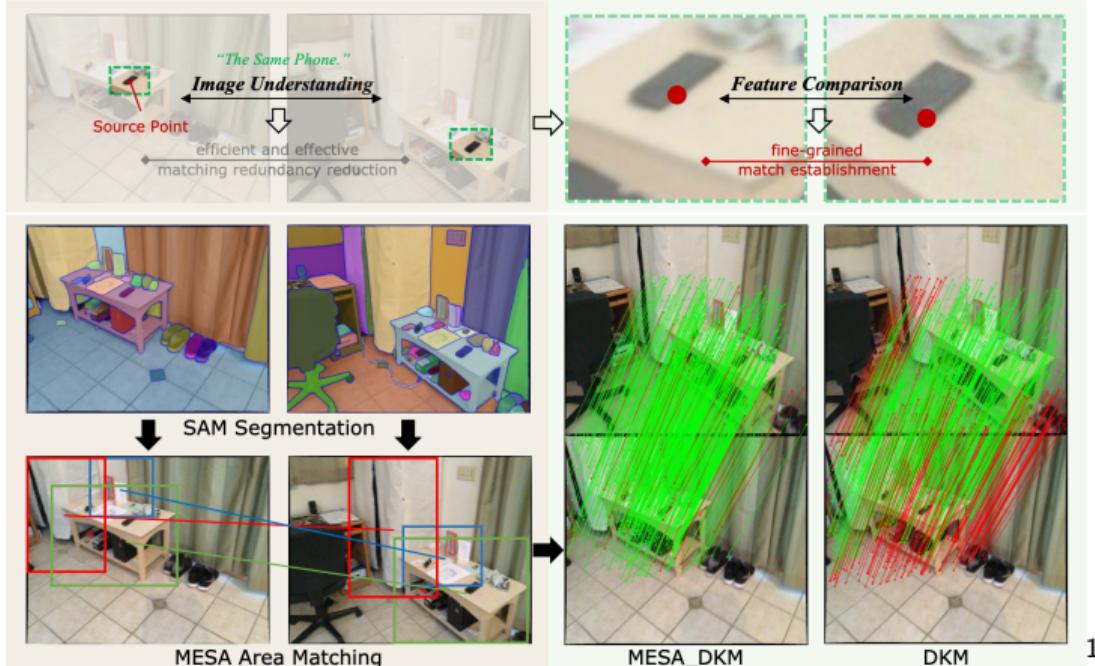
Why Local Feature Matching Matters

- Foundational for SfM, SLAM, visual localization, image retrieval, and many multi-view geometry tasks.
- Accurate pixel correspondences remain challenging under scale, viewpoint, illumination, and repetition changes.
- Achieving both high accuracy and high efficiency is essential for real-time, large-scale deployment.

Pixel-wise Matching Challenges

- Dense comparisons across entire images waste computation on irrelevant pixels.
- Highly sensitive to illumination changes, wide baselines, and repetitive structures, leading to unstable correspondences.
- Scaling to high-resolution or multi-image settings quickly becomes impractical.

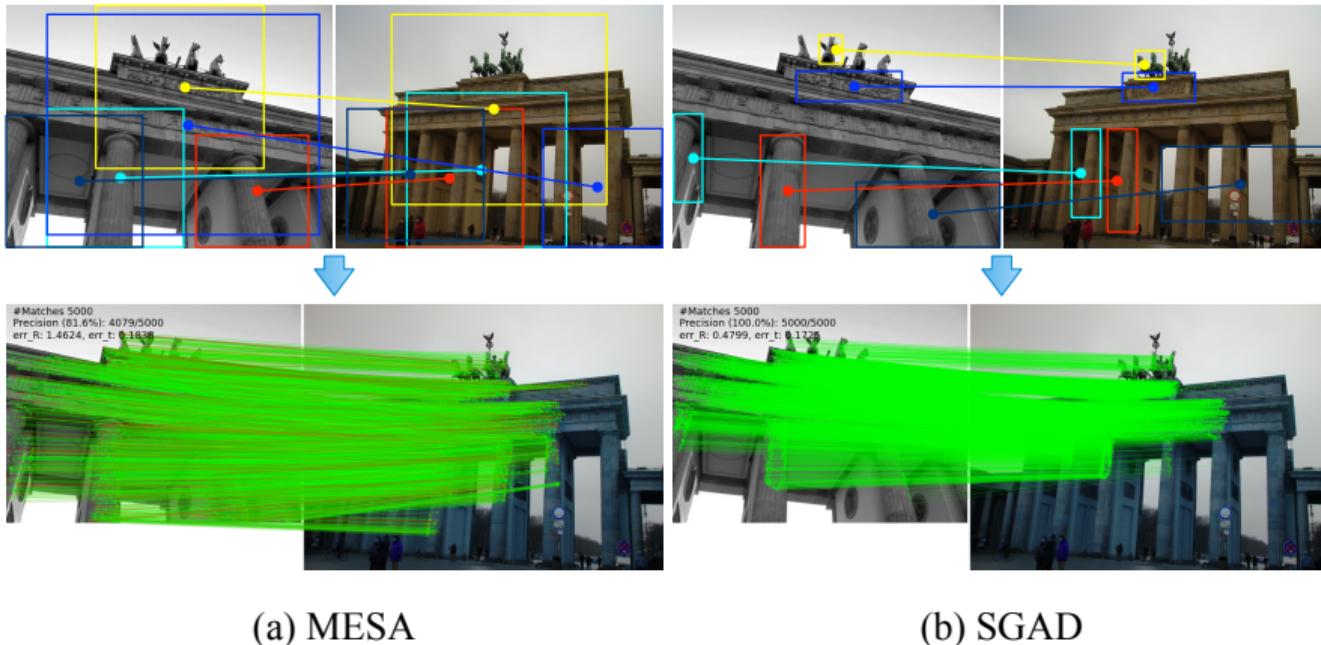
Opportunities for Area-to-Point Matching



- Segmenting overlapping regions first narrows the search space for point matchers.
- Region-level semantics deliver context that complements low-level descriptors.
- Motivates learning compact, reusable area representations.

¹Illustration adapted from MESA [9].

Limitations of MESA



- **Inefficiency:** pixel-level activity maps and graph matching dominate runtime.
- **Inconsistency:** merged or mismatched regions reduce subsequent point-matching accuracy.
- Motivates a descriptor-driven, single-pass alternative.

Problem Statement

Core Question

Can we **learn discriminative, geometry-aware area descriptors** and accomplish **global-consistent matching in a single forward pass**?

- Avoid the efficiency bottlenecks of pixel-wise comparisons and graph optimization.
- Provide reliable region priors that strengthen downstream point matchers.

Overview and Contributions

SGAD in a Nutshell

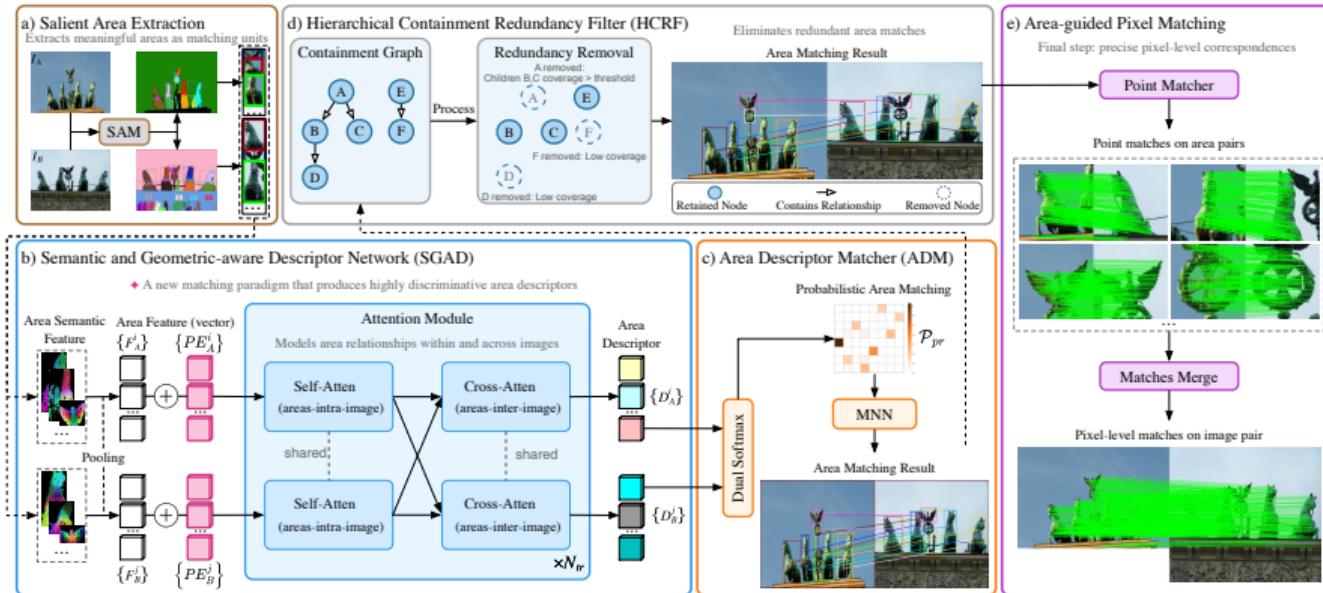
Area descriptors first: combine semantic cues and geometry to produce highly discriminative descriptors that a lightweight matcher can align efficiently.

Key Contributions

- Propose SGAD, an area descriptor network with alternating attentions and geometric positional encoding, enabling **single-pass** region matching.
- Introduce a **dual-task supervision** (classification + ranking) to jointly learn absolute and relative similarity.
- Design a **Hierarchical Containment Redundancy Filter (HCRF)** to prune overlapping areas; deliver consistent gains across matchers while being up to $60\times$ faster than MESA.

Method

SGAD Overview



- SAM segments salient regions; DINOv2 provides semantic descriptors.
- Geometric positional encoding injects cross-region relations; alternating self/cross attention fuses intra- and inter-image context.
- Dual-softmax + MNN yield matches; HCRF removes redundant areas before local point matching.

Semantic and Geometric Area Representation

Semantic Features

- SAM generates instance masks; we take bounding boxes as region proposals.
- A frozen DINOv2-L backbone extracts token features, average-pooled into area vectors F^i .

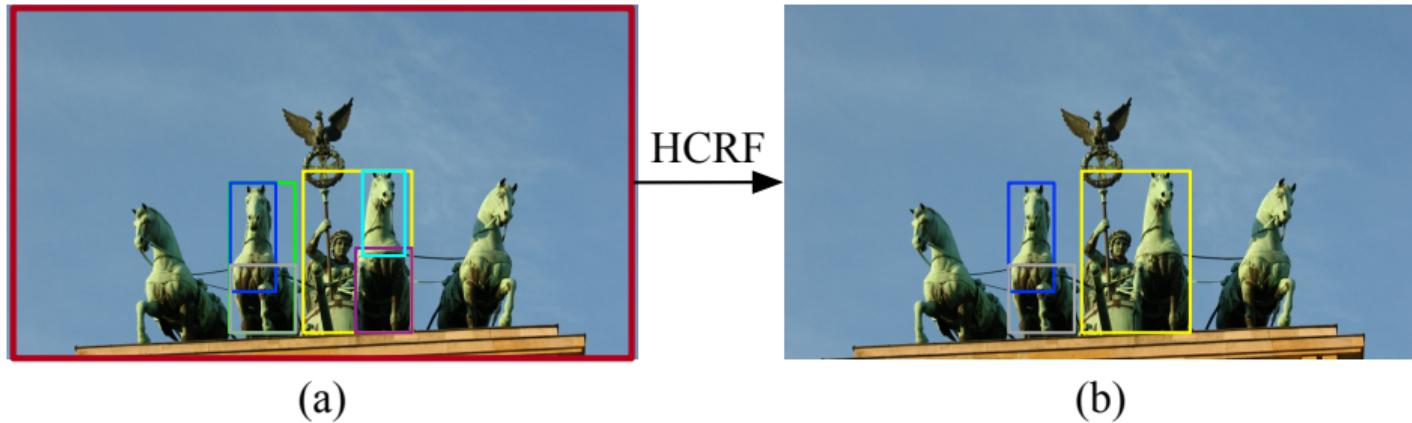
Geometric Positional Encoding

- Compute pairwise distances and angles between region centers to capture global relations.
- Feed statistics through an MLP and add to semantic features: $\hat{F}^i = F^i + PE^i$.
- Mitigates confusion between visually similar but spatially distinct regions.

Alternating Attention and Descriptor Matching

- **Alternating attention:** each layer performs intra-image self-attention followed by cross-image attention; $N_{tr} = 4$ layers output descriptors D_A^i, D_B^j .
- **Matching probabilities:** temperature-scaled dot products feed dual-softmax to obtain confidence matrix \mathcal{P}_{pr} .
- **Mutual nearest neighbor:** thresholding plus MNN enforce one-to-one matches and discard outliers.

Hierarchical Containment Redundancy Filter



- Build a containment graph with overlap and coverage thresholds to capture nested regions.
- Depth-first traversal decides whether to keep parents or children, removing redundant overlaps.
- Cuts downstream computations while preserving informative regions for point matching.

Dual-Task Supervision

Label Construction

- Use camera poses and depth to project regions across views; IoU provides ground-truth scores \mathcal{P}_{gt} .
- Threshold IoU to derive binary labels \mathcal{P}_{gt}^{cls} for the classification branch.

Loss Functions

- **Classification:** focal loss on \mathcal{P}_{pr} vs. \mathcal{P}_{gt}^{cls} balances easy/hard and pos/neg pairs.
- **Ranking:** ListMLE ensures predicted scores respect ground-truth ordering for each source region.
- Joint objective $\mathcal{L} = \mathcal{L}_{cls} + \mathcal{L}_{rank}$ captures both absolute and relative similarity cues.

Experiments

Experimental Setup

- **Datasets:** ScanNet1500 (indoor), MegaDepth1500 (outdoor), HPatches (homography).
- **Training:** separate indoor/outdoor models following LoFTR splits; AdamW, lr 1×10^{-4} , batch size 64, trained 2 days on one RTX A6000.
- **Backbones:** DINOv2-L frozen for semantics; SAM regions generated offline; $N_{tr} = 4$ transformer layers.
- **Metrics:** Area AUC, Homography AUC@3/5/10, Pose AUC@5°/10°/20°, runtime.

Area Matching Accuracy

Dataset	AUC@0.2	AUC@0.3	AUC@0.4	AUC@0.5
ScanNet1500	95.46	96.18	96.78	97.28
MegaDepth1500	97.39	97.81	98.02	98.18

Table: SGAD maintains $\geq 95\%$ area-matching AUC on both indoor and outdoor benchmarks.

- Unlike MESA/DMESA, SGAD outputs a full confidence matrix, simplifying evaluation and downstream integration.
- High-quality area correspondences provide strong priors for fine-grained point matchers.

Pose Estimation Improvements (ScanNet)

Pose estimation AUC	ScanNet1500 benchmark								
	1296 × 968			880 × 640			640 × 480		
	AUC@5°	AUC@10°	AUC@20°	AUC@5°	AUC@10°	AUC@20°	AUC@5°	AUC@10°	AUC@20°
TopicFM [4] <small>AAAI'23</small>	19.14	36.55	52.68	19.23	36.48	52.49	19.45	36.57	52.75
TopicFM+ [5] <small>TIP'24</small>	20.26	37.83	54.06	19.73	37.19	53.64	20.00	37.79	53.98
SP[1]+SG[6] <small>CVPR'19</small>	22.62	42.89	61.44	23.37	43.68	62.76	21.73	41.64	60.41
SGAD+SPSG	25.74 _{+13.79%}	45.95 _{+7.13%}	63.77 _{+3.79%}	25.17 _{+7.70%}	45.46 _{+4.08%}	63.48 _{+1.15%}	24.31 _{+11.87%}	44.64 _{+7.20%}	62.92 _{+4.15%}
LoFTR [7] <small>CVPR'21</small>	8.91	18.31	29.56	20.01	39.50	57.70	28.44	50.43	68.80
SGAD+LoFTR	29.69 _{+233.22%}	51.50 _{+181.27%}	69.58 _{+135.39%}	28.79 _{+43.88%}	50.68 _{+28.30%}	68.92 _{+19.45%}	28.69 _{+0.88%}	51.18 _{+1.49%}	69.40 _{+0.87%}
DKM [2] <small>CVPR'23</small>	24.16	44.03	61.34	29.30	51.02	68.51	30.17	51.80	69.52
MESA [9]+DKM <small>CVPR'24</small>	30.07 _{+24.46%}	51.57 _{+17.12%}	68.98 _{+12.46%}	30.76 _{+4.98%}	52.59 _{+3.08%}	69.74 _{+1.80%}	30.85 _{+2.25%}	52.57 _{+1.49%}	69.97 _{+0.65%}
DMESA [8]+DKM <small>ArXiv'24</small>	28.89 _{+19.58%}	49.34 _{+12.06%}	66.28 _{+8.05%}	30.61 _{+4.47%}	51.95 _{+1.82%}	69.14 _{+0.92%}	30.90 _{+2.42%}	52.31 _{+0.98%}	69.86 _{+0.49%}
SGAD+DKM	31.63 _{+30.92%}	52.98 _{+20.33%}	69.93 _{+14.00%}	31.85 _{+8.70%}	53.11 _{+4.10%}	70.12 _{+2.35%}	31.65 _{+4.91%}	53.12 _{+2.55%}	70.69 _{+1.68%}
SGAD [†] +DKM	31.51 _{+30.42%}	52.87 _{+20.08%}	69.87 _{+13.91%}	31.76 _{+8.40%}	53.02 _{+3.92%}	70.05 _{+2.25%}	31.49 _{+4.38%}	52.92 _{+2.16%}	70.55 _{+1.48%}
ROMA [3] <small>CVPR'24</small>	31.51	53.44	71.10	31.99	53.90	71.39	31.80	53.92	71.29
SGAD+ROMA	33.84 _{+7.39%}	55.37 _{+3.61%}	72.23 _{+1.59%}	33.61 _{+5.06%}	55.19 _{+2.39%}	72.11 _{+1.01%}	33.49 _{+5.31%}	55.14 _{+2.26%}	72.16 _{+1.22%}

Table: Relative pose estimation on ScanNet1500. [†]: model trained on MegaDepth.

Pose Estimation Improvements (MegaDepth)

Pose estimation AUC	MegaDepth1500 benchmark								
	1200 × 1200			832 × 832			640 × 640		
	AUC@5°	AUC@10°	AUC@20°	AUC@5°	AUC@10°	AUC@20°	AUC@5°	AUC@10°	AUC@20°
SP[1]+SG[6] <small>CVPR'19</small>	56.83	71.90	83.03	53.32	68.75	80.66	47.28	63.57	76.50
TopicFM [4] <small>AAAI'23</small>	52.68	69.44	81.42	49.36	67.28	80.01	46.53	64.15	77.73
TopicFM+ [5] <small>TIP'24</small>	56.52	71.93	82.87	55.03	70.18	81.49	49.53	65.31	77.49
LoFTR [7] <small>CVPR'21</small>	62.37	76.34	85.96	60.64	74.82	84.83	56.42	71.80	82.65
SGAD+LoFTR	65.98 _{+5.79%}	78.77 _{+3.18%}	87.13 _{+1.36%}	65.16 _{+7.45%}	77.94 _{+4.17%}	86.62 _{+2.11%}	63.94 _{+13.33%}	76.90 _{+7.10%}	85.78 _{+3.79%}
DKM [2] <small>CVPR'23</small>	61.11	74.63	84.02	62.42	75.88	85.11	63.26	76.13	84.97
MESA [9]+DKM <small>CVPR'24</small>	62.31 _{+1.96%}	76.11 _{+1.98%}	85.56 _{+1.83%}	62.68 _{+0.42%}	75.96 _{+0.11%}	85.35 _{+0.28%}	63.02 _{-0.38%}	76.31 _{+0.24%}	85.60 _{+0.74%}
DMESA [8]+DKM <small>ArXiv'24</small>	63.52 _{+3.94%}	76.29 _{+2.22%}	85.31 _{+1.54%}	64.02 _{+2.56%}	76.69 _{+1.07%}	85.54 _{+0.51%}	65.24 _{+3.13%}	77.98 _{+2.43%}	86.55 _{+1.86%}
SGAD+DKM	66.40 _{+8.66%}	78.38 _{+5.02%}	86.51 _{+2.96%}	66.49 _{+6.52%}	78.80 _{+3.85%}	87.23 _{+2.49%}	66.75 _{+5.52%}	78.80 _{+3.51%}	87.13 _{+2.54%}
SGAD [†] +DKM	66.04 _{+8.08%}	78.07 _{+4.61%}	86.50 _{+2.95%}	65.97 _{+5.69%}	78.35 _{+3.26%}	86.88 _{+2.08%}	66.73 _{+5.49%}	78.39 _{+2.97%}	86.67 _{+2.00%}
ROMA [3] <small>CVPR'24</small>	65.68	78.15	86.68	65.91	78.41	86.95	65.29	78.01	86.68
SGAD+ROMA	67.85 _{+3.30%}	79.87 _{+2.20%}	88.02 _{+1.55%}	68.34 _{+3.69%}	80.27 _{+2.37%}	88.34 _{+1.57%}	67.94 _{+4.06%}	80.09 _{+2.67%}	88.40 _{+1.98%}

Table: Relative pose estimation on MegaDepth1500. [†]: model trained on ScanNet.

Runtime Comparison

Single Forward-Pass Advantage

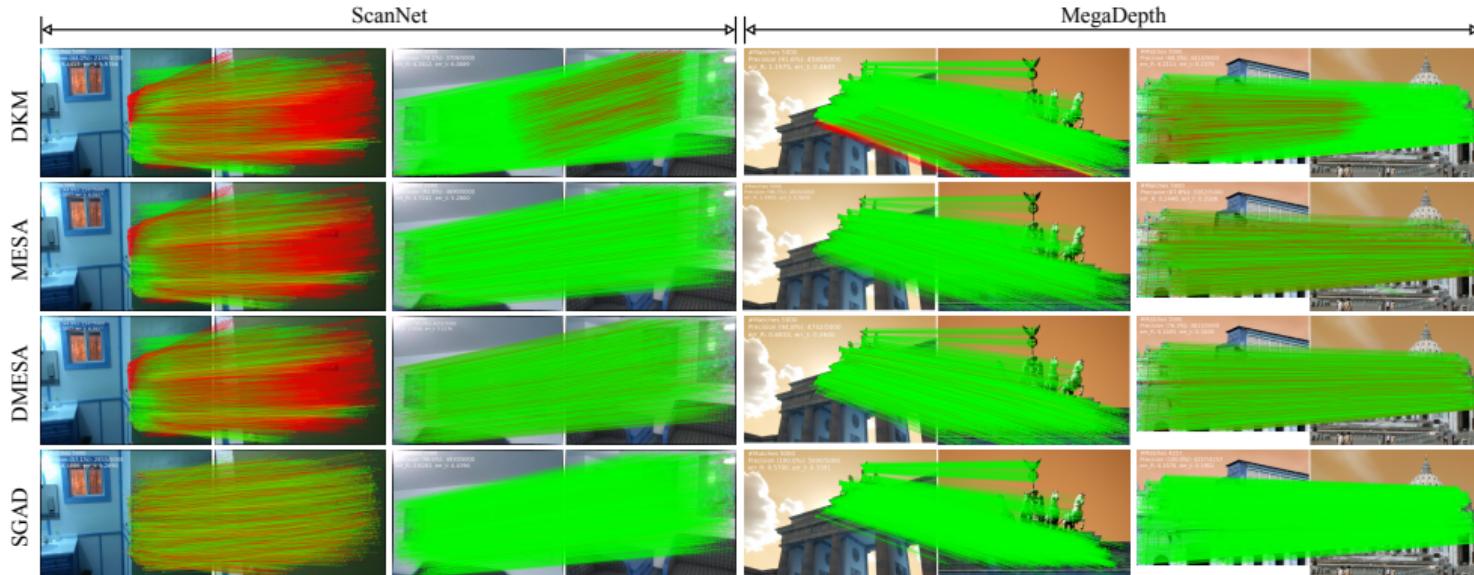
Matching relies on descriptor dot products and MNN filtering, which are fully parallelizable and eliminate graph-optimization bottlenecks.

	LoFTR	DKM	MESA+LoFTR	DMESA+LoFTR	SGAD+LoFTR
MegaDepth	0.38	1.51	60.23	1.84	0.82
ScanNet	0.28	0.72	33.44	1.38	0.67

Table: Average inference time (seconds) on an RTX A6000. SAM preprocessing excluded.

- SGAD+LoFTR is $\sim 73\times$ faster than MESA+LoFTR and $\sim 2.2\times$ faster than DMESA+LoFTR.
- Semi-dense SGAD+LoFTR even surpasses dense DKM in both speed and accuracy.

Qualitative Comparisons



- SGAD preserves more correct matches under large viewpoint changes and low-texture conditions.
- Rotation and translation errors are consistently lower than MESA and DMESA.

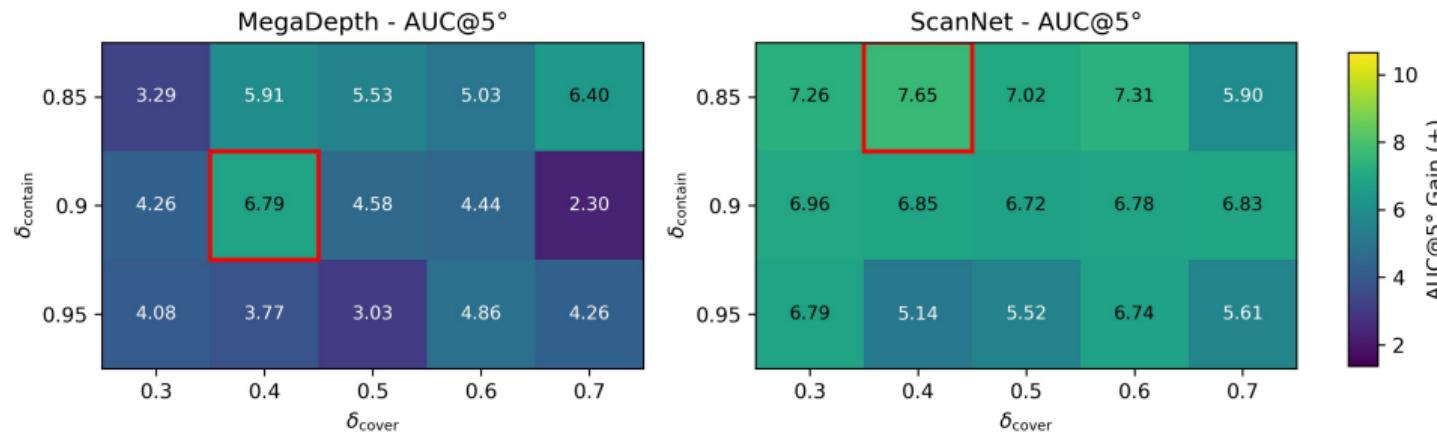
Ablation Study

	DINOv2	Attention	PE	\mathcal{L}_{cls}	\mathcal{L}_{rank}	$\mathcal{L}_{Triplet}$	AUC@0.2	AUC@0.3
1)	✓	✗	✗	✓	✓	✗	79.74	82.62
2)	✓	✓	✗	✓	✓	✗	92.52	94.23
3)	✓	✓	✓	✓	✓	✗	95.46	96.18
4)	✓	✓	✓	✓	✗	✗	94.82	95.61
5)	✓	✓	✓	✗	✗	✓	91.81	93.55

Table: Ablation on ScanNet1500 validating each component of SGAD.

- Geometric encoding and alternating attention drive descriptor discriminability.
- Ranking supervision boosts relative ordering beyond pure classification.

HCRF Sensitivity



- Coverage in $[0.4, 0.5]$ and contain threshold in $[0.85, 0.9]$ work robustly across datasets.
- Gains of $+6.79$ and $+7.65$ AUC@5° over LoFTR on MegaDepth and ScanNet, respectively.

Discussion

Comparison to MESA

- **Matching strategy:** SGAD replaces pixel-level activity maps and graph optimization with descriptor matching, drastically cutting complexity.
- **Descriptor strength:** SGAD aggregates global context, positional cues, and cross-image relationships, producing stable area correspondences without graph optimization.
- **Scalability:** training and inference are GPU-friendly and combine seamlessly with existing point matchers.

Takeaway

Descriptor-centric region matching offers a lightweight, scalable alternative to previous A2PM pipelines.

Limitations and Future Work

- Average pooling into compact vectors may still struggle with extreme geometric distortions—richer shape modeling could help.
- HCRF reduces redundancy, yet partial overlaps remain; exploring end-to-end region selection is promising.
- Current design cascades with point matchers; joint training or adaptive scheduling could further improve performance.

Conclusion

Conclusion

- SGAD delivers single-pass, parallel area matching that balances accuracy and efficiency.
- Dual-task supervision and HCRF strengthen match quality and downstream pose estimation.
- Verified gains across LoFTR, DKM, ROMA, establishing new state of the art on multiple benchmarks.

Resources

Project page: <https://mr-chiwang.github.io/SGAD/>

References I

- [1] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperPoint: Self-supervised interest point detection and description. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 224–236, 2018.
- [2] Johan Edstedt, Ioannis Athanasiadis, Mårten Wadenbäck, and Michael Felsberg. DKM: Dense kernelized feature matching for geometry estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 17765–17775, 2023.
- [3] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. RoMa: Robust dense feature matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19790–19800, 2024.
- [4] Khang Truong Giang, Soohwan Song, and Sungho Jo. TopicFM: Robust and interpretable topic-assisted feature matching. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 2447–2455, 2023.
- [5] Khang Truong Giang, Soohwan Song, and Sungho Jo. TopicFM+: Boosting accuracy and efficiency of topic-assisted feature matching. *IEEE Transactions on Image Processing*, 2024.
- [6] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue: Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4938–4947, 2020.

References II

- [7] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR: Detector-free local feature matching with transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8922–8931, 2021.
- [8] Yesheng Zhang and Xu Zhao. DMESA: Densely matching everything by segmenting anything. *arXiv preprint arXiv:2408.00279*, 2024.
- [9] Yesheng Zhang and Xu Zhao. MESA: Matching everything by segmenting anything. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20217–20226, 2024.

Thank You

Questions and discussion are welcome.