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Introduction



Why Local Feature Matching Matters

® Foundational for SfM, SLAM, visual localization, image retrieval, and many multi-view
geometry tasks.

® Accurate pixel correspondences remain challenging under scale, viewpoint, illumination, and
repetition changes.

® Achieving both high accuracy and high efficiency is essential for real-time, large-scale
deployment.



Pixel-wise Matching Challenges

® Dense comparisons across entire images waste computation on irrelevant pixels.
® Highly sensitive to illumination changes, wide baselines, and repetitive structures, leading to
unstable correspondences.

® Scaling to high-resolution or multi-image settings quickly becomes impractical.



Opportunities for Area-to-Point Matching
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MESA Area Matching MESA_DKM

Hllustration adapted from MESA [9].

® Segmenting overlapping
regions first narrows the
search space for point
matchers.

® Region-level semantics deliver
context that complements
low-level descriptors.

® Motivates learning compact,
reusable area representations.



Limitations of MESA
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(a) MESA (b) SGAD

¢ |nefficiency: pixel-level activity maps and graph matching dominate runtime.
® Inconsistency: merged or mismatched regions reduce subsequent point-matching accuracy.
® Motivates a descriptor-driven, single-pass alternative.



Problem Statement

Core Question

Can we learn discriminative, geometry-aware area descriptors and accomplish
global-consistent matching in a single forward pass?

® Avoid the efficiency bottlenecks of pixel-wise comparisons and graph optimization.

® Provide reliable region priors that strengthen downstream point matchers.



Overview and Contributions

SGAD in a Nutshell

Area descriptors first: combine semantic cues and geometry to produce highly discriminative
descriptors that a lightweight matcher can align efficiently.

Key Contributions

® Propose SGAD, an area descriptor network with alternating attentions and geometric
positional encoding, enabling single-pass region matching.

® Introduce a dual-task supervision (classification + ranking) to jointly learn absolute and
relative similarity.

® Design a Hierarchical Containment Redundancy Filter (HCRF) to prune overlapping
areas; deliver consistent gains across matchers while being up to 60x faster than MESA.



Method



SGAD Overview
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® SAM segments salient regions; DINOv2 provides semantic descriptors.

® Geometric positional encoding injects cross-region relations; alternating self/cross attention
fuses intra- and inter-image context.

® Dual-softmax + MNN yield matches; HCRF removes redundant areas before local point
matching.



Semantic and (Geometric Area Representation

Semantic Features

® SAM generates instance masks; we take bounding boxes as region proposals.

e A frozen DINOv2-L backbone extracts token features, average-pooled into area vectors F.

Geometric Positional Encoding

® Compute pairwise distances and angles between region centers to capture global relations.
® Feed statistics through an MLP and add to semantic features: £ = Fi + PE".

® Mitigates confusion between visually similar but spatially distinct regions.



Alternating Attention and Descriptor Matching

® Alternating attention: each layer performs intra-image self-attention followed by cross-image
attention; N;,. = 4 layers output descriptors DY, Dy,.

® Matching probabilities: temperature-scaled dot products feed dual-softmax to obtain
confidence matrix Pp,.

® Mutual nearest neighbor: thresholding plus MNN enforce one-to-one matches and discard
outliers.



Hierarchical Containment Redundancy Filter

® Build a containment graph with overlap and coverage thresholds to capture nested regions.
® Depth-first traversal decides whether to keep parents or children, removing redundant overlaps.

® Cuts downstream computations while preserving informative regions for point matching.



Dual-Task Supervision

Label Construction

® Use camera poses and depth to project regions across views; loU provides ground-truth scores
Pyt

® Threshold loU to derive binary labels chés for the classification branch.

Loss Functions

e Classification: focal loss on Pp,. vs. chis balances easy/hard and pos/neg pairs.

® Ranking: ListMLE ensures predicted scores respect ground-truth ordering for each source
region.

® Joint objective £ = L5 + Lqnk captures both absolute and relative similarity cues.



Experiments



Experimental Setup

Datasets: ScanNet1500 (indoor), MegaDepth1500 (outdoor), HPatches (homography).

® Training: separate indoor/outdoor models following LoFTR splits; AdamW, Ir 1 x 104,
batch size 64, trained 2 days on one RTX A6000.

Backbones: DINOv2-L frozen for semantics; SAM regions generated offline; N;,. = 4
transformer layers.

Metrics: Area AUC, Homography AUC@3/5/10, Pose AUC@5°/10°/20°, runtime.



Area Matching Accuracy

Dataset AUC@0.2 AUC@0.3 AUC@0.4 AUC®@0.5
ScanNet1500 95.46 96.18 96.78 97.28
MegaDepth1500 97.39 97.81 98.02 98.18

Table: SGAD maintains >95% area-matching AUC on both indoor and outdoor benchmarks.

® Unlike MESA/DMESA, SGAD outputs a full confidence matrix, simplifying evaluation and
downstream integration.

® High-quality area correspondences provide strong priors for fine-grained point matchers.



Pose Estimation Improvements (ScanNet)

Pose estimation AUC ScanNet1500 benchmark

1296 x 968 880 x 640 640 x 480
AUC@5° AUCe@10° AUC@20° AUC@S5° AUC@10° AUC@20° AUC@5° AUC@10°  AUC@20°

TopicFM [4] aarzs 19.14 36.55 52.68 19.23 36.48 52.49 19.45 36.57 52.75
TopicFM+ [5] teas 20.26 37.83 54.06 19.73 37.19 53.64 20.00 37.79 53.98
SP(1]+SG[6] cverro 22.62 42.89 61.44 23.37 43.68 62.76 21.73 41.64 60.41
SGAD+SPSG 2574, 1570% 45957130 637743700 2517, 770 454644080 63481150 24311157y 44647000 62924 15
LoFTR [7] cvers 8.01 18.31 29.56 20.01 39.50 57.70 28.44 50.43 68.80
SGAD+LoFTR 29.69, 233209 5150, 15127% 6958, 135.50% 28.79 4388% 50.6842530% 68.9241045% 28.69i0ss% 511841400  69.40,0 75
DKM [2] cvers 24.16 44.03 61.34 29.30 51.02 68.51 30.17 51.80 69.52

MESA [0]+DKM averas  30.070546% 51574171200 68.9841046% 307644080 52595087  69.744150% 308542050 52574149  69.97 0.65%
DMESA [8]+DKM sz 28.894 10557 49.34112.06% 662845055  30.61i4arz 5195180  69.1450.00%  30.9010.405 52310087  69.8640.49%

SGAD:}—DKM 31.63130.90% 52.98:92033%  69.9311400% 31.85:s70% 53.11i410% 70.12.5359  31.654401% 53121 955%  70.69.165%
SGAD'+DKM 31-51+30 42% 52.87 +20.08% 69'87“3.91% 31‘76+s.40% 53‘02+3 92% 70.05, 2 25% 31-49+4.38% 52-92+2.16% 70‘55“.45%
ROMA [3] cveras 3151 53.44 71.10 31.99 53.90 71.39 31.80 53.92 71.29

SGAD+ROMA 33-84+7 39% 55-37+3.51% 72~23+1.5q% 33-61+5 06% 55~19+2.39% 72~11+1.01% 33-49+5.31% 55-14+2 26% 72~16+1.22%

Table: Relative pose estimation on ScanNet1500. T: model trained on MegaDepth.



Pose Estimation Improvements (MegaDepth)

Pose estimation AUC MegaDepth1500 benchmark

1200 x 1200 832 x 832 640 x 640
AUC@5° AUC@10° AUC@20° AUC@5° AUC@10° AUC@20° AUC@5° AUC@10° AUC@20°
SP[1]4+SGI6] cvero 56.83 71.90 83.03 53.32 68.75 80.66 47.28 63.57 76.50
TopicFM [4] asarzs 52.68 69.44 81.42 49.36 67.28 80.01 46.53 64.15 77.73
TopicFM+ [5] ie2e 56.52 71.93 82.87 55.03 70.18 81.49 49.53 65.31 77.49
LoFTR [7] cverar 62.37 76.34 85.96 60.64 74.82 84.83 56.42 71.80 82.65
SGAD+LoFTR 65.98,579% 78.774318% 87.13,136% 651647459 77.941417% 86.62,0119% 63.9411333% 76.9017.10% 85.781379%
DKM [2] cverzs 61.11 74.63 84.02 62.42 75.88 85.11 63.26 76.13 84.97

MESA [9]+DKM cverae 623141 06%  76.114108% 855641839 62.684042% 75.964011% 85.35,028% 63.02 038% 76.311024% 85.601074%
DMESA [8]+DKM sz 63524501  76.20.090% 8530151 64.02,056% 76.691107% 85545051% 652415135 77981043  86.55.1 867

SGAD-+DKM 66.40,5.66% 783845000 86.51 506% 66496500 788053850 87.23.540% 66.75.5500  78.80 5519 87135545
SGAD'+DKM 66.04, 5050 78.07,461% 86.50 5050 65974560% 78.35,526% 86.88,20s% 667345409  78.39i507%  86.6742.00%
ROMA [3] cerzs 65.68 78.15 86.68 65.91 78.41 86.95 65.29 78.01 86.68

SGAD+ROMA 67.85, 550 79-87 500% 88.02,; 550 6834, 560 80.27 5575 88.34,1 570 67.94,5060 80.09,559 88.40 1 65y

Table: Relative pose estimation on MegaDepth1500. T: model trained on ScanNet.



Runtime Comparison

Single Forward-Pass Advantage

Matching relies on descriptor dot products and MNN filtering, which are fully parallelizable and
eliminate graph-optimization bottlenecks.

LoFTR DKM MESA+LoFTR DMESA+LoFTR SGAD+LoFTR

MegaDepth 0.38 1.51 60.23 1.84 0.82
ScanNet 0.28 0.72 33.44 1.38 0.67

Table: Average inference time (seconds) on an RTX A6000. SAM preprocessing excluded.

® SGAD+LoFTR is ~73x faster than MESA+LoFTR and ~2.2x faster than DMESA+LoFTR.
® Semi-dense SGAD+LoFTR even surpasses dense DKM in both speed and accuracy.



Qualitative Comparisons

| ScanNet I MegaDepth

DMESA MESA DKM

SGAD

® SGAD preserves more correct matches under large viewpoint changes and low-texture
conditions.

® Rotation and translation errors are consistently lower than MESA and DMESA.



Ablation Study

DINOv2 Attention PE Lus Lrank Lrriper AUCQ0.2  AUCQ0.3

1) v X X v v X 79.74 82.62
2) v v X v X 92.52 94.23
3) v v ooV X 95.46  96.18
4 v v oo/ X X 94.82 95.61
5 v X X v 91.81 93.55

Table: Ablation on ScanNet1500 validating each component of SGAD.

® Geometric encoding and alternating attention drive descriptor discriminability.

® Ranking supervision boosts relative ordering beyond pure classification.



HCRYF Sensitivity
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® Coverage in [0.4, 0.5] and contain threshold in [0.85, 0.9] work robustly across datasets.
® Gains of +6.79 and +7.65 AUC@5° over LoFTR on MegaDepth and ScanNet, respectively.



Discussion



Comparison to MESA

® Matching strategy: SGAD replaces pixel-level activity maps and graph optimization with
descriptor matching, drastically cutting complexity.

® Descriptor strength: SGAD aggregates global context, positional cues, and cross-image
relationships, producing stable area correspondences without graph optimization.

® Scalability: training and inference are GPU-friendly and combine seamlessly with existing
point matchers.

Takeaway
Descriptor-centric region matching offers a lightweight, scalable alternative to previous A2PM
pipelines.



Limitations and Future Work

® Average pooling into compact vectors may still struggle with extreme geometric distortions—
richer shape modeling could help.

® HCRF reduces redundancy, yet partial overlaps remain; exploring end-to-end region selection is
promising.

® Current design cascades with point matchers; joint training or adaptive scheduling could
further improve performance.



Conclusion



Conclusion

® SGAD delivers single-pass, parallel area matching that balances accuracy and efficiency.
® Dual-task supervision and HCRF strengthen match quality and downstream pose estimation.

® Verified gains across LoOFTR, DKM, ROMA, establishing new state of the art on multiple
benchmarks.

Resources
Project page: https://mr-chiwang.github.io/SGAD/



https://mr-chiwang.github.io/SGAD/
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Thank You

Questions and discussion are welcome.
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