Skip to yearly menu bar Skip to main content


Poster

Stable Diffusion Models are Secretly Good at Visual In-Context Learning

Trevine Oorloff · Vishwanath S · Wele Gedara Chaminda Bandara · Ali Shafahi · Amin Ghiasi · Charan Prakash · Reza Ardekani


Abstract:

Large language models (LLM) in natural language processing (NLP) have demonstrated great potential for in-context learning (ICL) -- the ability to leverage a few set of example prompts to adapt to various tasks without having to explicitly update model weights. ICL has recently been explored for the visual domain with promising early outcomes. These approaches involve specialized training and/or additional data which complicate the process and limit its generalizability. In this work, we show that off-the-shelf Stable Diffusion models can be re-purposed for visual in-context learning (V-ICL). Specifically, we formulate an in-place attention re-computation within the self-attention layers of the Stable Diffusion architecture that explicitly incorporates context between the query and example prompts. Without any additional fine-tuning, we show that this re-purposed Stable Diffusion model is able to adapt to six different tasks: foreground segmentation, single object detection, semantic segmentation, keypoint detection, edge detection, and colorization. For example, the proposed approach improves the mean intersection over union (mIoU) for the foreground segmentation task on Pascal-5i dataset by 8.9% and 3.2% over recent methods such as Visual Prompting and IMProv, respectively. Additionally, we show that the proposed method is able to effectively leverage multiple prompts through ensembling to infer the task better and further improve the performance across all tasks.

Live content is unavailable. Log in and register to view live content