Skip to yearly menu bar Skip to main content


Poster

Towards Effective Foundation Model Adaptation for Extreme Cross-Domain Few-Shot Learning

Fei Zhou · Peng Wang · Lei Zhang · Wei Wei · Chen Ding · Guosheng Lin · Yanning Zhang


Abstract:

Large-scale pre-trained foundation models have demonstrated remarkable generalization capabilities across diverse computer vision tasks through fine-tuning. However, existing fine-tuning approaches often encounter challenges in extreme cross-domain few-shot learning scenarios, primarily due to the significant domain shift between pre-training data and target tasks, as well as the scarcity of annotated target samples. To mitigate this issue, we propose a novel absorption adaptation learning framework which meticulously regularizes the fine-tuning procedure of foundation model using an expert model with the same architecture but trained from scratch on the targeted data in two aspects. On one hand, we first design a masked cross-model unidirectional reconstruction scheme, which forces the foundation model to recover the intermediate feature of the expert model in a randomly masked manner. On the other hand, a decision graph association loss is developed to encourage the consistency of token similarity matrix between these two models. By doing these, the task-relevant semantic knowledge in the expert model from both intermediate feature and the final decision levels are appropriately extracted and absorbed by the foundation model during its fine-tuning, thus mitigating the performance drop caused by domain gap and limited annotation. Sufficient experiments with further observations and analyses underpin our observation and argument.

Live content is unavailable. Log in and register to view live content