Poster
Dynamic Typography: Bringing Text to Life via Video Diffusion Prior
Zichen Liu · Yihao Meng · Hao Ouyang · Yue Yu · Bolin Zhao · Daniel Cohen-Or · Huamin Qu
Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. The animation is represented by a canonical field that aggregates the semantic content in a canonical shape and a deformation field that applies per-frame motion to deform the canonical shape. Two fields are jointly optimized by the priors from a large pretrained text-to-video diffusion model using score-distillation loss with designed regularization, encouraging the video coherence with the intended textual concept while maintaining legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our methodology over baselines. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability.
Live content is unavailable. Log in and register to view live content