Poster
LLaVA-CoT: Let Vision Language Models Reason Step-by-Step
Guowei Xu · Peng Jin · ZiangWu ZiangWu · Li Hao · Yibing Song · Lichao Sun · Li Yuan
Large language models have demonstrated substantial advancements in reasoning capabilities. However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question-answering tasks. In this work, we introduce LLaVA-CoT, a large VLM designed to conduct autonomous multistage reasoning. Unlike chain-of-thought prompting, LLaVA-CoT independently engages in sequential stages of summarization, visual interpretation, logical reasoning, and conclusion generation. This structured approach enables LLaVA-CoT to achieve marked improvements on reasoning-intensive tasks. To accomplish this, we construct the LLaVA-CoT-100k dataset, integrating samples from various visual question answering sources and providing structured reasoning annotations. Besides, we propose a test-time stage-wise retracing search method (SWIRES), which enables effective and efficient test-time scaling. Remarkably, with only 100k training samples and test-time scaling, LLaVA-CoT not only outperforms its base model by 9.4% on a wide range of multimodal reasoning benchmarks, but also surpasses the performance of larger and even closed-source models, such as Gemini-1.5-pro, GPT-4o-mini, and Llama-3.2-90B-Vision-Instruct. The code, dataset, and pre-trained weights will be made publicly available.
Live content is unavailable. Log in and register to view live content