Skip to yearly menu bar Skip to main content


Poster

Adaptive Caching for Faster Video Generation with Diffusion Transformers

Kumara Kahatapitiya · Haozhe Liu · Sen He · Ding Liu · Menglin Jia · Chenyang Zhang · Michael Ryoo · Tian Xie


Abstract:

Generating temporally-consistent high-fidelity videos can be computationally expensive, especially over longer temporal spans. More-recent Diffusion Transformers (DiTs)--- despite making significant headway in this context--- have only heightened such challenges as they rely on larger models and heavier attention mechanisms, resulting in slower inference speeds. In this paper, we introduce a method to accelerate video DiTs, termed Adaptive Caching (AdaCache), which is motivated by the fact that 'not all videos are created equal': meaning, some videos require fewer denoising steps to attain a reasonable quality than others. Building on this, we not only cache computations through the diffusion process, but also devise a caching schedule tailored to each video generation, maximizing the quality-latency trade-off. We further introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, essentially controlling the compute allocation based on motion content. Altogether, our plug-and-play contributions grant significant inference speedups (e.g. up to 4.7x on Open-Sora 720p - 2s video generation) without sacrificing the generation quality, across multiple video DiT baselines.

Live content is unavailable. Log in and register to view live content