Skip to yearly menu bar Skip to main content


Poster

Scaling Laws for Native Multimodal Models

Mustafa Shukor · Enrico Fini · Victor Guilherme Turrisi da Costa · Matthieu Cord · Joshua Susskind · Alaaeldin El-Nouby


Abstract:

Building general-purpose models that can effectively perceive the world through multimodal signals has been a long-standing goal. Current approaches involve integrating separately pre-trained components, such as connecting vision encoders to LLMs and continuing training on multimodal data. While such approaches exhibit remarkable sample efficiency, it remains an open question whether such late-fusion architectures are inherently superior. In this work, we revisit the architectural design of native multimodal models (NMMs)—those trained from the ground up on all modalities—and conduct an extensive scaling laws study, spanning 457 trained models with different architectures and training mixtures. Our investigation reveals no inherent advantage to late-fusion architectures over early-fusion ones, which do not rely on pre-trained image encoders or tokenizers. On the contrary, early-fusion exhibits stronger performance at lower parameter count, is more efficient to train, and is easier to deploy. Motivated by the strong performance of the early-fusion architectures, we show that incorporating Mixture of Experts (MoEs) allows models to learn modality-specific weights, significantly benefiting performance.

Live content is unavailable. Log in and register to view live content