Poster
Shape of Motion: 4D Reconstruction from a Single Video
Qianqian Wang · Vickie Ye · Hang Gao · Weijia Zeng · Jake Austin · Zhengqi Li · Angjoo Kanazawa
Monocular dynamic reconstruction is a challenging and long-standing vision problem due to the highly ill-posed nature of the task. Existing approaches depend on templates, are effective only in quasi-static scenes, or fail to model 3D motion explicitly. We introduce a method for reconstructing generic dynamic scenes, featuring explicit, persistent 3D motion trajectories in the world coordinate frame, from casually captured monocular videos.We tackle the problem with two key insights: First, we exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE(3) motion bases. Each point's motion is expressed as a linear combination of these bases, facilitating soft decomposition of the scene into multiple rigidly-moving groups. Second, we take advantage of off-the-shelf data-driven priors such as monocular depth maps and long-range 2D tracks, and devise a method to effectively consolidate these noisy supervisory signals, resulting in a globally consistent representation of the dynamic scene. Experiments show that our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.
Live content is unavailable. Log in and register to view live content