Skip to yearly menu bar Skip to main content


Poster

Flow4Agent: Long-form Video Understanding via Motion Prior from Optical Flow

Ruyang Liu · Shangkun Sun · Haoran Tang · Wei Gao · Ge Li


Abstract:

Long-form video understanding has always been a challenging problem due to the significant redundancy in both temporal and spatial contents. This challenge is further exacerbated by the limited context length of Multimodal Large Language Models (MLLMs). To address this issue, many previous works have attempted to extract key video information, where the "key" is typically semantic-aware and heavily dependent on the CLIP model as prior. In this paper, we propose Flow4Agent, a novel framework that pioneeringly incorporates motion priors from optical flow to facilitate LLM-based long video understanding. Flow4Agent mitigates the redundancy in long videos at both temporal and spatial levels through two core modules: Temporal Granularity Optimization (TGO) adaptively refines frame-level hierarchies, which first leverages coarse flow priors to group similar visual contents and then applies semantic priors to filter out highly irrelevant scene information. Motion Token Pruning (MTP) further refines the intra-frame visual representations, pruning high-redundancy video tokens using fine-grained optical flow information. Extensive experiments demonstrate that our Flow4Agent outperforms existing methods across a wide range of video MLLM benchmarks, especially for hour-level video understanding tasks, achieving 64.7\% on Video-MME, 71.4\% on MLVU and 60.4\% on LongVideoBench.

Live content is unavailable. Log in and register to view live content