Skip to yearly menu bar Skip to main content


Poster

Neural Inverse Rendering for High-Accuracy 3D Measurement of Moving Objects with Fewer Phase-Shifting Patterns

Yuki Urakawa · Institute of Science Tokyo Yoshihiro


Abstract:

Among structured-light methods, the phase-shifting approach enables high-resolution and high-accuracy measurements using a minimum of three patterns. However, its performance is significantly affected when dynamic and complex-shaped objects are measured, as motion artifacts and phase inconsistencies can degrade accuracy. In this study, we propose an enhanced phase-shifting method that incorporates neural inverse rendering to enable the 3D measurement of moving objects. To effectively capture object motion, we introduce a displacement field into the rendering model, which accurately represents positional changes and mitigates motion-induced distortions. Additionally, to achieve high-precision reconstruction with fewer phase-shifting patterns, we designed a multiview-rendering framework that utilizes multiple cameras in conjunction with a single projector. Comparisons with state-of-the-art methods and various ablation studies demonstrated that our method accurately reconstructs the shapes of moving objects, even with a small number of patterns, using only simple, well-known phase-shifting patterns.

Live content is unavailable. Log in and register to view live content