Poster
Learnable Retrieval Enhanced Visual-Text Alignment and Fusion for Radiology Report Generation
Qin Zhou · Guoyan Liang · Xindi Li · Jingyuan CHEN · Zhe Wang · Chang Yao · Sai Wu
Automated radiology report generation is essential for improving diagnostic efficiency and reducing the workload of medical professionals. However, existing methods face significant challenges, such as disease class imbalance and insufficient cross-modal fusion. To address these issues, we propose the learnable Retrieval Enhanced Visual-Text Alignment and Fusion (REVTAF) framework, which effectively tackles both class imbalance and visual-text fusion in report generation. REVTAF incorporates two core components: (1) a Learnable Retrieval Enhancer (LRE) that utilizes semantic hierarchies from hyperbolic space and intra-batch context through a ranking-based metric. LRE adaptively retrieves the most relevant reference reports, enhancing image representations, particularly for underrepresented (tail) class inputs; and (2) a fine-grained visual-text alignment and fusion strategy that ensures consistency across multi-source cross-attention maps for precise alignment. This component further employs an optimal transport-based cross-attention mechanism to dynamically integrate task-relevant textual knowledge for improved report generation. By combining adaptive retrieval with multi-source alignment and fusion, REVTAF achieves fine-grained visual-text integration under weak image-report level supervision while effectively mitigating data imbalance issues. Comprehensive experiments demonstrate that REVTAF outperforms state-of-the-art methods, achieving an average improvement of 7.4% on the MIMIC-CXR dataset and 2.9% on the IU X-Ray dataset. Comparisons with mainstream multimodal LLMs (e.g., GPT-series models), further highlight its superiority in radiology report generation.
Live content is unavailable. Log in and register to view live content