Poster
MosaicDiff: Training-free Structural Pruning for Diffusion Model Acceleration Reflecting Pretraining Dynamics
Bowei Guo · Shengkun Tang · Cong Zeng · Zhiqiang Shen
Diffusion models are renowned for their generative capabilities, yet their pretraining processes exhibit distinct phases of learning speed that have been entirely overlooked in prior post-training acceleration efforts in the community. In this study, we introduce a novel framework called MosaicDiff that aligns diffusion pretraining dynamics with post-training sampling acceleration via trajectory-aware structural pruning. Our approach leverages the observation that the middle, fast-learning stage of diffusion pretraining requires more conservative pruning to preserve critical model features, while the early and later, slow-learning stages benefit from a more aggressive pruning strategy. This adaptive pruning mechanism is the first to explicitly mirror the inherent learning speed variations of diffusion pretraining, thereby harmonizing the model's inner training dynamics with its accelerated sampling process. Extensive experiments on DiT and SDXL demonstrate that our method achieves significant speed-ups in sampling without compromising output quality, outperforming previous state-of-the-art methods by large margins, also providing a new viewpoint for more efficient and robust training-free diffusion acceleration.
Live content is unavailable. Log in and register to view live content