Skip to yearly menu bar Skip to main content


Poster

Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description

Anna-Maria Halacheva · Yang Miao · Jan-Nico Zaech · Xi Wang · Luc Gool · Danda Pani Paudel


Abstract:

3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered in the research field. In this work, we address this shortcoming by introducing: (1) Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes. Articulate3D provides 8 types of annotations for articulated objects, covering parts and detailed motion information,all stored in a standardized scene representation format designed for scalable 3D content creation, exchange and seamless integration into simulation environments. (2) USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects. We evaluate USDNet on Articulate3D as well as two existing datasets, demonstrating the advantage of our unified dense prediction approach. Furthermore, we highlight the value of Articulate3D through cross-dataset and cross-domain evaluations and showcase its applicability in downstream tasks such as scene editing through LLM prompting and robotic policy training for articulated object manipulation. Our dataset, benchmark, and method’s source code will be made publicly available.

Live content is unavailable. Log in and register to view live content