Skip to yearly menu bar Skip to main content


Poster

Extrapolated Urban View Synthesis Benchmark

Xiangyu Han · Zhen Jia · Boyi Li · Yan Wang · Boris Ivanovic · Yurong You · Lingjie Liu · Yue Wang · Marco Pavone · Chen Feng · Yiming Li


Abstract:

Photorealistic simulators are essential for the training and evaluation of vision-centric autonomous vehicles (AVs). At their core is Novel View Synthesis (NVS), a crucial capability that generates diverse unseen viewpoints to accommodate the broad and continuous pose distribution of AVs. Recent advances in radiance fields, such as 3D Gaussian Splatting, achieve photorealistic rendering at real-time speeds and have been widely used in modeling large-scale driving scenes. However, their performance is commonly evaluated using an interpolated setup with highly correlated training and test views. In contrast, extrapolation, where test views largely deviate from training views, remains underexplored, limiting progress in generalizable simulation technology. To address this gap, we leverage publicly available AV datasets with multiple traversals, multiple vehicles, and multiple cameras to build the first Extrapolated Urban View Synthesis (EUVS) benchmark. Meanwhile, we conduct both quantitative and qualitative evaluations of state-of-the-art NVS methods across different evaluation settings. Our results show that current NVS methods are prone to overfitting to training views. Besides, incorporating diffusion priors and improving geometry cannot fundamentally improve NVS under large view changes, highlighting the need for more robust approaches and large-scale training. We will release the data to help advance self-driving and urban robotics simulation technology.

Live content is unavailable. Log in and register to view live content