Poster
GeoProg3D: Compositional Visual Reasoning for City-Scale 3D Language Fields
Shunsuke Yasuki · Taiki Miyanishi · Nakamasa Inoue · Shuhei Kurita · Koya Sakamoto · Daichi Azuma · Masato Taki · Yutaka Matsuo
The advancement of 3D language fields has enabled intuitive interactions with 3D scenes via natural language. However, existing approaches are typically limited to small-scale environments, lacking the scalability and compositional reasoning capabilities necessary for large, complex urban settings. To overcome these limitations, we propose GeoProg3D, a visual programming framework that enables natural language-driven interactions with city-scale high-fidelity 3D scenes. GeoProg3D consists of two key components: (i) a Geography-aware City-scale 3D Language Field (GCLF) that leverages a memory-efficient hierarchical 3D model to handle large-scale data, integrated with geographic information for efficiently filtering vast urban spaces using directional cues, distance measurements, elevation data, and landmark references; and (ii) Geographical Vision APIs (GV-APIs), specialized geographic vision tools such as area segmentation and object detection. Our framework employs large language models (LLMs) as reasoning engines to dynamically combine GV-APIs and operate GCLF, effectively supporting diverse geographic vision tasks. To assess performance in city-scale reasoning, we introduce GeoEval3D, a comprehensive benchmark dataset containing 952 query-answer pairs across five challenging tasks: grounding, spatial reasoning, comparison, counting, and measurement. Experiments demonstrate that GeoProg3D significantly outperforms existing 3D language fields and vision-language models across multiple tasks. To our knowledge, GeoProg3D is the first framework enabling compositional geographic reasoning in high-fidelity city-scale 3D environments via natural language.
Live content is unavailable. Log in and register to view live content