Poster
RnGCam: High-speed video from rolling & global shutter measurements
Kevin Tandi · Xiang Dai · Chinmay Talegaonkar · Gal Mishne · Nicholas Antipa
Compressive video capture encodes a short high-speed video into a single measurement using a low-speed sensor, then computationally reconstructs the original video. Prior implementations rely on expensive hardware and are restricted to imaging sparse scenes with empty backgrounds. We propose RnGCam, a system that fuses measurements from low-speed consumer-grade rolling-shutter (RS) and global-shutter (GS) sensors into video at kHz frame rates. The RS sensor is combined with a pseudorandom optic, called a diffuser, which spatially multiplexes scene information. The GS sensor is coupled with a conventional lens. The RS-diffuser provides low spatial detail and high temporal detail, complementing the GS-lens system's high spatial detail and low temporal detail. We propose a reconstruction method using implicit neural representations (INR) to fuse the measurements into a high-speed video. Our INR method separately models the static and dynamic scene components, while regularizing dynamics explicitly. In simulation, we show that our approach significantly outperforms previous RS compressive video methods, as well as state-of-the-art frame interpolators. We validate our approach in a dual-camera hardware setup, which generates 230 frames of video at 4,800 frames per second for dense scenes, using hardware that costs 10x less than previous compressive video systems.
Live content is unavailable. Log in and register to view live content