Poster
AutoPrompt: Automated Red-Teaming of Text-to-Image Models via LLM-Diven Adversarial Prompts
Yufan Liu · Wanqian Zhang · Huashan Chen · Lin Wang · Xiaojun Jia · Zheng Lin · Weiping Wang
Despite rapid advancements in text-to-image (T2I) models, their safety mechanisms are vulnerable to adversarial prompts, which maliciously generate unsafe images. Current red-teaming methods for proactively assessing such vulnerabilities usually require white-box access to T2I models, and rely on inefficient per-prompt optimization, as well as inevitably generate semantically meaningless prompts easily blocked by filters. In this paper, we propose APT (AutoPrompT), a black-box framework that leverages large language models (LLMs) to automatically generate human-readable adversarial suffixes for benign prompts. We first introduce an alternating optimization-finetuning pipeline between adversarial suffix optimization and fine-tuning the LLM utilizing the optimized suffix. Furthermore, we integrates a dual-evasion strategy in optimization phase, enabling the bypass of both perplexity-based filter and blacklist word filter: (1) we constrain the LLM generating human-readable prompts through an auxiliary LLM perplexity scoring, which starkly contrasts with prior token-level gibberish, and (2) we also introduce banned-token penalties to suppress the explicit generation of banned-tokens in blacklist.Extensive experiments demonstrate the excellent red-teaming performance of our human-readable, filter-resistant adversarial prompts, as well as superior zero-shot transferability which enables instant adaptation to unseen prompts and exposes critical vulnerabilities even in commercial APIs (e.g., Leonardo.Ai.).
Live content is unavailable. Log in and register to view live content