Poster
The Silent Assistant: NoiseQuery as Implicit Guidance for Goal-Driven Image Generation
Ruoyu Wang · Huayang Huang · Ye Zhu · Olga Russakovsky · Yu Wu
In this work, we introduce NoiseQuery as a novel method for enhanced noise initialization in versatile goal-driven text-to-image (T2I) generation. Specifically, we propose to leverage an aligned Gaussian noise as implicit guidance to complement explicit user-defined inputs, such as text prompts, for better generation quality and controllability. Unlike existing noise optimization methods designed for specific models, our approach is grounded in a fundamental examination of the generic finite-step noise scheduler design in diffusion formulation, allowing better generalization across different diffusion-based architectures in a tuning-free manner. This model-agnostic nature allows us to construct a reusable noise library compatible with multiple T2I models and enhancement techniques, serving as a foundational layer for more effective generation. Extensive experiments demonstrate that NoiseQuery enables fine-grained control and yields significant performance boosts not only over high-level semantics but also over low-level visual attributes, which are typically difficult to specify through text alone, with seamless integration into current workflows with minimal computational overhead.
Live content is unavailable. Log in and register to view live content