Skip to yearly menu bar Skip to main content


Poster

Enpowering Your Pansharpening Models with Generalizability: Unified Distribution is All You Need

Yongchuan Cui · Peng Liu · HUI ZHANG


Abstract:

Existing deep learning-based models for remote sensing pansharpening exhibit exceptional performance on training datasets. However, due to sensor-specific characteristics and varying imaging conditions, these models suffer from substantial performance degradation when applied to unseen satellite data, lacking generalizability and thus limiting their applicability. We argue that the performance drops stem primarily from distributional discrepancies from different sources and the key to addressing this challenge lies in bridging the gap between training and testing distributions. To validate the idea and further achieve a “train once, deploy forever” capability, this paper introduces a novel and intuitive approach to enpower any pansharpening models with generalizability by employing a unified distribution strategy (UniPAN). Specifically, we construct a distribution transformation function that normalizes the pixels sampled from different sources to conform to an identical distribution. The deep models are trained on the transformed domain, and during testing on new datasets, the new data are also transformed to match the training distribution. UniPAN aims to train and test the model on a unified and consistent distribution, thereby enhancing its generalizability. Extensive experiments validate the efficacy of UniPAN, demonstrating its potential to significantly enhance the performance of deep pansharpening models across diverse satellite sensors. Codes will be publicly available at github.

Live content is unavailable. Log in and register to view live content