Skip to yearly menu bar Skip to main content


Poster

DisCo: Towards Distinct and Coherent Visual Encapsulation in Video MLLMs

JIAHE ZHAO · rongkun Zheng · Yi Wang · Helin WANG · Hengshuang Zhao


Abstract:

In video Multimodal Large Language Models (video MLLMs), the visual encapsulation process plays a pivotal role in converting video contents into representative tokens for LLM input. While linear projectors are widely employed for encapsulation, they introduce semantic indistinctness and temporal incoherence when applied to videos. Conversely, the structure of resamplers shows promise in tackling these challenges, but an effective solution remains unexplored. Drawing inspiration from resampler structures, we introduce DisCo, a novel visual encapsulation method designed to yield semantically distinct and temporally coherent visual tokens for video MLLMs. DisCo integrates two key components: (1) A Visual Concept Discriminator (VCD) module, assigning unique semantics for visual tokens by associating them in pair with discriminative concepts in the video. (2) A Temporal Focus Calibrator (TFC) module, ensuring consistent temporal focus of visual tokens to video elements across every video frame. Through extensive experiments on multiple video MLLM frameworks, we demonstrate that DisCo remarkably outperforms previous state-of-the-art methods across a variety of video understanding benchmarks, while also achieving higher token efficiency thanks to the reduction of semantic indistinctness.

Live content is unavailable. Log in and register to view live content