Skip to yearly menu bar Skip to main content


Oral

Oral 4B: 3D Pose Understanding

Kalakaua Ballroom
Wed 22 Oct 4 p.m. PDT — 5:15 p.m. PDT
Abstract:
Chat is not available.

Wed 22 Oct. 16:15 - 16:30 PDT

Forecasting Continuous Non-Conservative Dynamical Systems in SO(3)

Lennart Bastian · Mohammad Rashed · Nassir Navab · Tolga Birdal

Modeling the rotation of moving objects is a fundamental task in computer vision, yet $SO(3)$ extrapolation still presents numerous challenges: (1) unknown quantities such as the moment of inertia complicate dynamics, (2) the presence of external forces and torques can lead to non-conservative kinematics, and (3) estimating evolving state trajectories under sparse, noisy observations requires robustness.We propose modeling trajectories of noisy pose estimates on the manifold of 3D rotations in a physically and geometrically meaningful way by leveraging Neural Controlled Differential Equations guided with $SO(3)$ Savitzky-Golay paths.Existing extrapolation methods often rely on energy conservation or constant velocity assumptions, limiting their applicability in real-world scenarios involving non-conservative forces. In contrast, our approach is agnostic to energy and momentum conservation while being robust to input noise, making it applicable to complex, non-inertial systems. Our approach is easily integrated as a module in existing pipelines and generalizes well to trajectories with unknown physical parameters.By learning to approximate object dynamics from noisy states during training, our model attains robust extrapolation capabilities in simulation and various real-world settings.

Wed 22 Oct. 16:30 - 16:45 PDT

Certifiably Optimal Anisotropic Rotation Averaging

Carl Olsson · Yaroslava Lochman · Johan Malmport · Christopher Zach

Rotation averaging is a key subproblem in applications of computer vision and robotics. Many methods for solving this problem exist, and there are also several theoretical results analyzing difficulty and optimality. However, one aspect that most of these have in common is a focus on the isotropic setting, where the intrinsic uncertainties in the measurements are not fully incorporated into the resulting optimization task. Recent empirical results suggest that moving to an anisotropic framework, where these uncertainties are explicitly included, can result in an improvement of solution quality. However, global optimization for rotation averaging has remained a challenge in this scenario.In this paper we show how anisotropic costs can be incorporated in certifiably optimal rotation averaging. We also demonstrate how existing solvers, designed for isotropic situations, fail in the anisotropic setting. Finally, we propose a stronger relaxation and show empirically that it is able to recover global optima in all tested datasets and leads to a more accurate reconstruction in all but one of the scenes.

Wed 22 Oct. 16:45 - 17:00 PDT

Deterministic Object Pose Confidence Region Estimation

Jinghao Wang · Zhang Li · Zi Wang · Banglei Guan · Yang Shang · Qifeng Yu

Recently, 6D pose confidence region estimation has emerged as a critical direction, aiming to perform uncertainty quantification for assessing the reliability of estimated poses. However, current sampling-based approach suffers from critical limitations that severely impede their practical deployment: 1) the sampling speed significantly decreases as the number of samples increases. 2) the derived confidence regions are often excessively large. To address these challenges, we propose a deterministic and efficient method for estimating pose confidence regions. Our approach uses inductive conformal prediction to calibrate the deterministically regressed Gaussian keypoint distributions into 2D keypoint confidence regions. We then leverage the implicit function theorem to propagate these keypoint confidence regions directly into 6D pose confidence regions. This method avoids the inefficiency and inflated region sizes associated with sampling and ensembling, providing compact confidence regions that cover the ground-truth poses with a user-defined confidence level. Experimental results on the LineMOD Occlusion and SPEED datasets show that our method achieves higher pose estimation accuracy with reduced computational time. For the same coverage rate, our method yields significantly smaller confidence region volumes, reducing them by up to 99.9% for rotations and 99.8% for translations. The code will be available soon.

Wed 22 Oct. 17:00 - 17:15 PDT

RePoseD: Efficient Relative Pose Estimation With Known Depth Information

Yaqing Ding · Viktor Kocur · VACLAV VAVRA · Zuzana Berger Haladova · jian Yang · Torsten Sattler · Zuzana Kukelova

Recent advances in monocular depth estimation methods (MDE) and their improved accuracy open new possibilities for their applications. In this paper, we investigate how monocular depth estimates can be used for relative pose estimation. In particular, we are interested in answering the question whether using MDEs improves results over traditional point-based methods. We propose a novel framework for estimating the relative pose of two cameras from point correspondences with associated monocular depths. Since depth predictions are typically defined up to an unknown scale or even both unknown scale and shift parameters, our solvers jointly estimate the scale or both the scale and shift parameters along with the relative pose. We derive efficient solvers considering different types of depths for three camera configurations: (1) calibrated cameras, (2) cameras with an unknown shared focal length, and (3) cameras with unknown different focal lengths. Our new solvers outperform state-of-the-art depth-aware solvers in terms of speed and accuracy. In extensive real experiments on multiple datasets and with various MDEs, we discuss which depth-aware solvers are preferable in which situation. The code will be made publicly available.

Wed 22 Oct. 17:15 - 17:30 PDT

Diving into the Fusion of Monocular Priors for Generalized Stereo Matching

Chengtang Yao · Lidong Yu · Zhidan Liu · Jiaxi Zeng · Yuwei Wu · Yunde Jia

The matching formulation makes it naturally hard for the stereo matching to handle ill-posed regions like occlusions and non-Lambertian surfaces. Fusing monocular priors has been proven helpful for ill-posed matching, but the biased monocular prior learned from small stereo datasets constrains the generalization. Recently, stereo matching has progressed by leveraging the unbiased monocular prior from the vision foundation model (VFM) to improve the generalization in ill-posed regions. We dive into the fusion process and observe three main problems limiting the fusion of the VFM monocular prior. The first problem is the misalignment between affine-invariant relative monocular depth and absolute depth of disparity. Besides, when we use the monocular feature in an iterative update structure, the over-confidence in the disparity update leads to local optima results. A direct fusion of a monocular depth map could alleviate the local optima problem, but noisy disparity results computed at the first several iterations will misguide the fusion. In this paper, we propose a binary local ordering map to guide the fusion, which converts the depth map into a binary relative format, unifying the relative and absolute depth representation. The computed local ordering map is also used to re-weight the initial disparity update, resolving the local optima and noisy problem. In addition, we formulate the final direct fusion of monocular depth to the disparity as a registration problem, where a pixel-wise linear regression module can globally and adaptively align them. Our method fully exploits the monocular prior to support stereo matching results effectively and efficiently. We nearly double the performance from the experiments when generalizing from SceneFlow to Middlebury and Booster datasets while barely reducing the efficiency. \textbf{The training and testing codes for each experiment are all provided in the supplemental materials.}